

MY ALL X X G 03 002 O

April 2023

PETRONAS UPSTREAM NAMING STANDARD FOR MALAYSIA OPERATIONS

Version 1.0

MY ALL X X G 03 002 O

April 2023

MY ALL X X G 03 002 O

April 2023

THIS PAGE IS INTENTIONALLY LEFT BLANK -

MY ALL X X G 03 002 O

April 2023

DOCUMENT AUTHORIZATION

Requester/Preparer		
Signature	Signed in respective chapters	
Name	Nurshazareena Shuhada Zait	
Date	2023	
Position	Executive, Data Standard & Taxonomy, Data, Upstream	

Requester/Preparer		
Signature	Signed in respective chapters	
Name	Ngu King Chai	
Date	2023	
Position Senior Manager, Data Accelerator, Upstream Digital, and Technology		

	Reviewer, Endorser & Approver
Signature	Signed in respective chapters
Name	Respective Approver by Chapters
Date	2023

MY ALL X X G 03 002 O

April 2023

DOCUMENT APPROVAL - BY CHAPTER

Basin To Play

	Name	Designation	Department/Division	Signature	Date
	Nurshazareena Shuhada Zait	Executive	Data Management, COE/Upstream	Bld	19 May 2022
Prepared by:	Azimah Bt Ali	Manager	Data Management-Geology & Geophysics, COE/Upstream	anombri	20 May 2022
	Ngu King Chai	Head	Data Management, Data, COE/Upstream	₩8	20 May 2022
	Dayang Hasspariah Bt Sapri	Principal Stratigraphy	Americas Basin, Exploration/Upstream	\$	14 July 2022
	Marc de Urreiztieta	Custodian Petroleum Geoscience	Technical Assurance, Exploration/Upstream	mil.	08 July 2022
Reviewed by:	Michael Nosiara	Custodian Petroleum Geoscience	Asia Pacific Basin, Exploration/Upstream	M.Nosiara	22 July 2022
	Zulhaimi A Rahman	Principal Petroleum Geoscience	Basin Strategy & Management, MPM/Upstream	Žulhaimi	08 Aug 2022
	Ong Swee Keong	Principal Petroleum Geoscience	PSC Exploration Management, MPM/Upstream	Ong	08 Aug 2022
	Mimi Lina Bt Isa	Staff Petroleum Geoscience	Technical Governance, Exploration/Upstream	NA	22 Sept 2022
	Caitriona Rayne Keegan	Head of TAC Governance	Technical Governance, Exploration/Upstream	Celler	22 Sept 2022
Endorsed by:	Dr Azli Bin Abu Bakar	Head of Basin & Petroleum System	Basin & Petroleum System, Exploration/Upstream	apribuses	26 Sept 2022
Approved by:	Azmir B Zamri	Head of Resource Exploration	Resource Exploration, MPM/Upstream	9	22 Sept 2022
прргочец ву.	Liau Min Hoe	Head of Technical Assurance & Capability	Technical Assurance & Capability, Exploration/Upstream	Líau	23 Sept 2022

Region & Asset name for PCSB

	Name	Designation	Discipline	Signature	Date
Prepared by:	NURUL ZARINIE M ZAKI	EXECUTIVE	BPI CORPORATE, STRATEGY & COMMERCIAL	Q4.	8 APR 2022
	ILI SYAZANA BT IBRAHIM	MANAGER	BPI CORPORATE, STRATEGY & COMMERCIAL	Sym	8 APR 2022
Reviewed by:					
Approved by:	ROSLI B A RAHIM	HEAD	BPI MALAYSIA ASSETS, STRATEGY & COMMERCIAL	()~	8 APR 2022

Field Code and Facilities

	Name	Designation	Discipline	Signature	Date
Prepared by:	Nurshazareena Shuhada Zait	Executive, Data Management	Data, COE/Upstream	Block	6 Oct 2022
Prepared by.	Ngu King Chai	Head, Data Management	Data, COE/Upstream	WB	7 Oct 2022
	Kisminder Singh A/l Amar Singh	Manager, Front End	Front End, RDM, MPM	2	31 Oct 2022
Reviewed by:	Norshariza Bt Hanafiah	Staff TP RDM (PM/SB)	Front End, RDM, MPM	ashust-	11 Oct 2022
Reviewed by.	Nor Mohamad b M Yusof	Staff TP RDM (SK)	Front End, RDM, MPM	pl.	Nov 2, 2022
	Shaharil Mazri B Shaharom	Principle TP RDM	Front End, RDM, MPM	78	2 Nov 2022

MY ALL X X G 03 002 O

April 2023

Memorandum For Your Approval

Serial No 202211060066 Internal

Date: Reference: 06 Nov 2022 UDD001512-

129/ND/PNSFUA/04/NOVEMBER/2022

Due Date: Status:

Approved

From: Noorul Shigim Bt Ahmad Fadzil

(COE/Upstream)

Senior Manager (National Data), National Data-MPM,

Center of Excellence

To: Aidil B Shabudin (MPM/Upstream)

Head (Resource Development & Management), Resource Development & Management, Malaysia

Petroleum Management

CC: See Distribution list

Subject:

REQUEST FOR APPROVAL OF PETRONAS NAMING STANDARD FOR UPSTREAM

ASSETS - FIELD CODE AND FACILITIES

CC

Syahrini Bt Mokhtar (MPM/Upstream)

Head (RDM - PM), Resource Development & Management - PM, Malaysia Petroleum Management

Mohamad B Abu Bakar (MPM/Upstream)

Head (RDM - SB), Resource Development & Management - SB, Malaysia Petroleum Management

Noriani @ Yati Bt Mohamad (MPM/Upstream)

Head (RDM - SK), Resource Development & Management - SK, Malaysia Petroleum Management

Rahim Masoudi (VP_MPM/Upstream)

Custodian (Reservoir Engineering), Resource Development & Management, Malaysia Petroleum Management

Noorbaiti Bt Safian (COE/Upstream)

General Manager (Data - Upstream), Data - Upstream, Center of Excellence

Ngu King Chai (COE/Upstream)

Senior Manager (Data Strategy & Governance), Data Management, Center of Excellence

Norshahreen Bt M Idris (COE/Upstream)

Manager (Data Standard & Taxonomy), Data Standard & Taxonomy, Center of Excellence

Rozaidy B Zainul (COE/Upstream)

Manager (PAC Data Governance), National Data-MPM, Center of Excellence

Nurshazareena Shuhada Zait (COE/Upstream)

Executive (Data Standard & Taxonomy), Data Management, Center of Excellence

MY ALL X X G 03 002 O

April 2023

Reservoir and Perforation Zone

	Name	Designation	Department/Division	Signature	Date
	Nurshazareena Shuhada Zait	Executive, Data Standard & Taxonomy	Data Management, COE/Upstream	She	22 Nov 2022
Prepared by:	Norshahreen Bt M Idris	Manager, Data Standard & Taxonomy	Data Management, COE/Upstream	bythol-	25 Nov 2022
	Ngu King Chai	Head of Data Accelerator	Data Management, COE/Upstream	CMB	25 Nov 2022
	Mimi Lina Bt Isa	Staff, Petroleum Geoscience	Technical Governance, Exploration/Upstream	NA.	22 Nov 2022
	M Adni B Wahab	Staff, Reservoir Geology	Technical Capability, Exploration/Upstream	000	30 Nov 2022
	M Fauzi B Deraman	Staff, Petroleum Geoscience	PSC Exploration Management, MPM/Upstream	Cuintai.	29 Nov 2022
D : 11	Azwa Jannah Bt Abu Bakar	Staff, Petroleum Geoscience	PSC Exploration Management, MPM/Upstream	**************************************	2 Dec 2022
Reviewed by: (Reservoir)	Syarizan Bt Mustapha	Principal, Reservoir Engineering	PCSB Technical Advisory Operations, COE/Upstream	804	9 Dec 2022
	Nurul Aula Bt A'akif Fadzil	Manager, PE-SB	Resource Development & Management, MPM/Upstream	<u>D</u> .	7 th Dec 2022
	Nazim Musani Tajuddin	Staff, Reservoir Engineering	Resource Development & Management, MPM/Upstream	Made	2 nd Dec 2022
	Caitriona Rayne Keegan	Head of TAC Governance	Technical Governance, Exploration/Upstream	Bur.	5 th Dec 2022
Reviewed by:	Syafiq Effendi Jalis	Specialist, Production Technology	PCSB RWFM, COE/Upstream	syafig	7 th Dec 2022
(Perforation)	Ts. Khairul Nizam B Idris	Principal, Production Technology	Resource Development & Management, MPM/Upstream	Mifn	7 Dec 2022

Memorandum For Your Approval

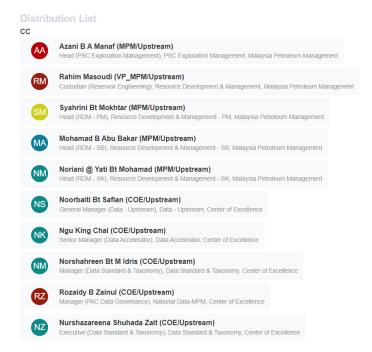
Serial No 202301160195 Internal

Noorul Shigim Bt Ahmad Fadzil (COE/Upstream) Date: 16 Jan 2023 From: Senior Manager (National Data), National Data, Center of E...

Reference: UDD001512-129/ND/PNSF...

To: Aidil B Shabudin (MPM/Upstream) Due Date: N/A Head (Resource Development & Management), Resource ...

Status: **Approved** CC: See distribution list


Subject: REQUEST FOR APPROVAL OF PETRONAS NAMING STANDARD FOR UPSTREAM

ASSETS-RESERVOIR AND PERFORATION ZONE

MY ALL X X G 03 002 O

April 2023

Equipment Tag Number

	Name	Designation	Discipline	Signature	Date
Prepared by:	Normanisah Binti Mat Ghani	Executive	Data Management, Upstream Digital	Mengel	18/07/2022
Reviewed by:	Norshahreen M Idris	Manager	Data Management - Surface Engineering	hghel-	18/07/2022
	Ngu King Chai	Senior Manager	Data Management, Upstream Digital	College Colleg	27/07/2022
	Sundralingam AL Muthanandan	Principal	Mechanical - Rotating	80	08/08/2022
Reviewed and acknowledged by:	Hanafi Bin Basri	Principal	Mechanical – Static (Unfired)	Humbi	16/8/2022
	Umar Zakir Bin Ahmad	Principal	Electrical - Generation	Omfa,	28/07/2022
	Raymond Lam Choong Meng	Principal	Pipeline Integrity	12	11/08/2022
	M Shahrustami M Nadzeri	Principal	Pipeline Integrity	Jug.	10/8/2022

MY ALL X X G 03 002 O

April 2023

Proprietar	y Information
i i Opi iciai	y ii ii Oi i ii atioi i

The document contains proprietary information which belongs to PETRONAS and shall not be wholly or partially reproduced nor disclosed without prior permission from PETRONAS

MY ALL X X G 03 002 O

April 2023

ACKNOWLEDGEMENT

The author acknowledges the contribution and commitment of the following PETRONAS personnel who have dedicated their time and shared their resources in development, deliberation and review of this document. This document attests to the constructive and comprehensive contributions which have proven to be invaluable in the process of developing and realising this document.

No	Name	Job Position
1	Dzulkarnain B Azaman	Head of Upstream Digital & Technology, COE
2	Noorbaiti Bt Safian	Head of Data - Upstream, Upstream Digital & Technology, COE
3	Lee Hin Wong	Senior Manager (Data Strategy & Governance), Data – Upstream, Upstream Digital & Technology
4	Azimah Bt Ali	Manager (Data Security & Capability), Data – Upstream, Upstream Digital & Technology
5	Norshahreen Bt M Idris	Manager (Data Standard & Taxonomy), Data – Upstream, Upstream Digital & Technology
6	M Azmir M Ghazali	Manager (R&M Data and Interoperability), Data – Upstream, Upstream Digital & Technology
7	Nor Kartini Suriati Bt Mansor	Manager (Data Accelerator-MA), Data – Upstream, Upstream Digital & Technology
8	Normanisah Binti Mat Ghani	Executive (Data Security & Capability), Data – Upstream, Upstream Digital & Technology
9	M Amir B Abdullah	Manager (Asset Management), Asset Assurance, Asset Integrity Management, MPM
10	M Shahrustami B M Nadzeri	Principal (Pipeline Integrity), Asset Integrity, Technical Excellence
11	Naila Rusma Bt Idris	Principal (Pipeline Integrity), Pipeline Replacement & Integrity, GTS
12	Khalid B Zaid	Manager (Asset Management), Asset Assurance, Asset Integrity Management, MPM
13	Anis Salwa Bt Ramli	Manager Surveillance, PCSB RWFM, Petroleum Engineering

Open

MY ALL X X G 03 002 O

April 2023

TABLE OF CONTENTS

2 2 2
2
つ
2
4
5
7
8
8
8
9
9
9
11
11
11
12
12
13
17
22
22
22
24

MY ALL X X G 03 002 O

April 2023

7	WEL	L	27
-	7.1	Well Name	27
8	RESE	ERVOIR AND PERFORATION	29
6	8.1	RESERVOIR	29
ć	8.2	PERFORATION ZONE	37
9	TER	MINAL	41
(9.1	Definition	41
(9.2	Terminal and Integrated Facility Name	43
(9.3	Terminal and Integrated Facility Code	46
10	PLA1	TFORM	48
	10.1	Definition	48
	10.2	Fixed Platform Name and Code	50
,	10.3	Floating Platform Name and Code	53
11	PIPE	LINE	57
,	11.1	Definition	57
	11.2	Pipeline ID and Name	58
12	EQU	IIPMENT	62
	12.1	Definition	62
	12.2	Equipment Tag Number Convention	62
,	12.3	Example Of Equipment Numbers	73
12	APPI	ENDIX	90
,	Append	ix 1: R&M Data Management	90
,	Append	ix 2: Sample of Choronostratigraphic Chart	91

MY ALL X X G 03 002 O

April 2023

LIST OF FIGURES

Figure 1-1: Upstream R&M Hierarchy	1
Figure 1-2: PETRONAS Document Structure	2
Figure 3-1: Region Name and Code	9
Figure 5-1: Main basin and Sub basin/province outline of Malaysia	12
Figure 5-2: Play Illustration	17
Figure 6-1: Illustration of Lead, Prospect and Field Area	23
Figure 8-1: Illustration of reservoir	30
Figure 8-2: Illustration of reservoir	32
Figure 8-3: Example illustration of stratigraphic, unit/pray, reservoir, and fault block	32
Figure 8-4: Example illustration of reservoir and perforation zone	33
Figure 8-5: Illustration of Perforation Zone	37
Figure 9-1: Terminal	42
Figure 9-2: Integrated Facilities	42
Figure 10-1: Fixed Platform	49
Figure 10-2: Floater	49
Figure 11-1: Pipeline Example	57
Figure 11-2: Example pipeline name in engineering drawing	57
Figure 11-3: Pipeline in Subsea Area (Known as umbilical)	61
Figure 12-1: Process Unit 29: Gas Import / Export From BNJT-K Oil/Gas NAG Launcher	r. 71
Figure 12-2: BNJT-K Process Flow Scheme Separation System	72
Figure 12-3: BNJT-K Oil/Gas Separation System With A/B Configuration	73
Figure 12-4: BNJT-K Oil/Gas Separation System With A/B Configuration	74

MY ALL X X G 03 002 O

April 2023

Figure 12-5: BNJT-K Process Flow Scheme Production, Test and Injection Header	74
Figure 12-6: BNJT-K Instrument and Utility Air System	76
Figure 12-7: BNCPP-B Power Generation/Distribution	. 78
Figure 12-8: BNJT-K Instrument and Utility Air System	. 80
Figure 12-9: BNJT-K Process Flow Scheme Emergency Diesel Engine Generator	81
Figure 12-10: BNJT-K Process Flow Scheme Water Injection	. 83
Figure 12-11: BNJT-K Instrument and Utility Air System	. 83
Figure 12-12: BNJT-K Open Drain System	. 85
Figure 12-13: BNJT-K NAG Production Wellhead	. 85
Figure 12-14: BNJT-K Process Flow Scheme Launchers and Risers	. 86
Figure 12-15: R-501 & R-502 From Dulang Oil Separation System	. 88
Figure 12-16: V-1010 From BNJT-K HP Separator	. 89
Figure 12-17: V-1020 From BN IT-K Process Flow Scheme Separator System	89

MY ALL X X G 03 002 O

April 2023

LIST OF TABLES

Table 1-1: Document Security Classification	5
Table 1-2: Vital Document Classification	7
Table 2-1: Country Code Format	8
Table 2-2: Standard Country Naming and Code	8
Table 3-3: Region Name and Code Format	9
Table 2-4: Standard Region Name and Code	10
Table 4-1: Regional Asset Naming and Code Format	11
Table 4-2: Standard Regional Asset Name and Code	11
Table 5-1: Basin Naming Format	13
Table 5-2: Naming Convention for Basin	13
Table 5-3: Main Basin in Malaysia	15
Table 5-4: Examples of Main Basin and Sub-Basin/Province in Sarawak and S	· ·
Table F. F. Dlay Namina Commention	
Table 5-5: Play Naming Convention	
Table 5-6: Play's Abbreviation Convention	19
Table 5-7: Abbreviation of Epoch	20
Table 5-8: Abbreviation of Stratigraphic Nomenclature	20
Table 5-9: Malaysia Play Naming Standard	21
Table 6-1: Format and Criteria of Lead, Prospect and Field Name	23
Table 6-2: Example of Lead, Prospect and Field Name	24
Table 6-3: Description of Field Code	24
Table 6-4: Field Code Standard Rules	25
Open	

MY ALL X X G 03 002 O

April 2023

Table 7-1: Well Naming and Code Format	27
Table 7-2: Well Naming Convention	28
Table 7-3: Well Code Convention	28
Table 8-1: Description of reservoir components	30
Table 8-2: Reservoir Naming Convention	34
Table 8-3: Stratigraphic Unit	36
Table 8-4: Compartment Direction	37
Table 8-5: Description of Perforation Zone	38
Table 8-6: Perforation Naming Convention	39
Table 8-7: Perforation Code Convention	40
Table 9-1: Terminal and Integrated Facilities description	41
Table 9-2: Terminal Name General Format	43
Table 9-3: Terminal Name Format	44
Table 9-4: Integrated Facilities Naming Convention	45
Table 9-5: Terminal Code Format	46
Table 9-6: Integrated Facilities Code Format	47
Table 10-1: Fixed Platform Naming Standard	50
Table 10-2: Fixed Platform Code Abbreviation Standard	51
Table 10-3: Floater Naming Standard	53
Table 10-4: Floater Code Abbreviation Standard	54
Table 10-5: Platform Function Abbreviation	55
Table 10-6: Floater Function Abbreviation	56
Table 11-1: Pipeline ID Standard	58
Open	

MY ALL X X G 03 002 O

April 2023

Table 11-2: Pipeline Naming Format	. 59
Table 11-3: Pipeline Name Convention	. 60
Table 11-4: Proposed Pipeline Naming Standard Format	61
Table 12-1: Equipment Tag Number Convention	. 62
Table 12-2: Equipment Function Code	. 64
Table 12-3: Equipment Tag No. Convention	67
Table 12-4: Example of Process Unit & Code for BNJT-K	. 69
Table 12-5: Tag Number for Pump	73
Table 12-6: Tag Number for Compressor	75
Table 12-7: Tag Number for Turbine	77
Table 12-8: Tag Number for Heat Exchanger	79
Table 12-9: Tag Number for Generator	81
Table 12-10: Tag Number for Separator	. 82
Table 12-11: Tag Number for Storage Tank	. 84
Table 12-12: Tag Number for Launcher	. 86
Table 12-13: Tag Number for Receiver	. 87
Table 12-14: Tag Number for Pressure Vessel	. 88

MY ALL X X G 03 002 O

April 2023

DISTRIBUTION LIST

No.	Name	Job Position	
1	Aidil B Shabudin	Head of Resource Development & Management, MPM	
2	Azmir B Zamri	Head of Resource Exploration, MPM	
3	Liau Min Hoe	Head of Technical Assurance & Capability, Exploration, Upstream	
4	Dzulkarnain B Azaman	Head of Upstream Digital & Technology, CoE, Upstream	
5	M Shahrustami B M Nadzeri	Principle, Pipeline Integrity, GTS	

MY ALL X X G 03 002 O

April 2023

AMENDMENT SUMMARY

The Amendment Summary shall be updated after each revision. The details shall include revision number, description (e.g. pages or paragraphs that have been revised), date of revision approval, designation of approver and signature.

Rev	Description	Date	Designation of Approver
1	The objectives of this standards are to standardize the naming and coding for selected asset/facilities of PETRONAS Upstream.	2023	EVP & CoE Upstream

Notes:

- I. Document Custodian to update Amendment Summary as and when amendments or new revisions are received.
- II. For partial amendment, the relevant page(s) will be labelled with a lower-case letter (e.g. 1a) at the revision column.
- III. For description on amendment, the Document Custodian should indicate modification, update or deletion.

MY ALL X X G 03 002 O

April 2023

PREFACE

PETRONAS Upstream Naming Standard shall be used as the standard for naming and coding across the Upstream domain. This is the first establishment of naming standard document that develop and consolidate the crucial naming in Upstream. This standard describes the naming standard covering; country code, basin, play, prospect, well, reservoir, perforation zone, terminal, platform, pipeline, and equipment. By following this standard, the naming consistency shall be preserved and assured for all stages of data lifecycle.

MY ALL X X G 03 002 O

April 2023

LANGUAGE CONVENTION

In this document, the recommendations for a course of action are made with varying degrees of emphasis. As a rule:

- I. 'shall' indicates a course of action with a required, mandatory status within the Business Units or Assets. The English language equivalent or interchangeable term of "shall" is "shall."
- II. 'should' indicates a preferred course of action.
- III. 'may' indicates a possible course of action.

MY ALL X X G 03 002 O

April 2023

ABBREVIATIONS

Abbreviation	Description		
CDS	Corporate Data Store		
CO2	Carbon Dioxide		
E&P	Exploration & Production		
FSO	Floating, Storage and Offloading		
FPSO	Floating, Production, Storage and Offloading		
FWS	Full Well Stream		
ID	Identification		
ISO	International Organization for Standardization		
MPM	Malaysia Petroleum Management		
PCSB	PETRONAS Carigali Sdn. Bhd.		
PETRONAS	Petroliam Nasional Berhad		
PGRM	Petroleum Geology and Resource of Malaysia		
PPGUA	PETRONAS Procedures and Guidelines for Upstream Activities		
R&M	Reference & Master		
SME	Subject Matter Experts		
PTS	PETRONAS Technical Standard		
USGS	United States Geological Survey		

MY ALL X X G 03 002 O

April 2023

GLOSSARY

Term	Definition		
Brownfield	An oil or gas accumulation that has matured to a production		
	plateau or even progressed to a stage of declining production.		
	Operating companies seek to extend the economic producing		
	life of the field using cost-effective, low-risk technologies.		
	Stimulation or refracturing operations, completing additional		
	zones, and installing artificial lift equipment are a few		
	technologies commonly applied in brownfields before any		
	drilling options are attempted.		
Greenfield	Capital project that is constructed on a site that has not been		
	built upon in the past. The project may be located adjacent to		
	other facilities (in or not in operation). Also known as a grass-		
	roots project.		

MY ALL X X G 03 002 O

April 2023

REFERENCE DOCUMENTS

No	Document Title		
1	Prospect and Well Naming Standards for Malaysia Operations (August 2022), PETROLIAM NASIONAL BERHAD.		
2	Symbol and Identification System – Mechanical. PTS 12.00.02 (June 2017), PETROLIAM NASIONAL BERHAD.		
3	PETRONAS Procedures & Guidelines for Upstream Activities (PPGUA) – Volume 1 (December 2020), PETROLIAM NASIONAL BERHAD.		
4	Upstream Portfolio Project Naming Guidelines (2021), PETROLIAM NASIONAL BERHAD.		
5	Project Naming Convention (by MPM GSR) (July 2019), PETROLIAM NASIONAL BERHAD.		
6	PETRONAS Reserves and Resources Management System (PRrMS) (June 2020), PETROLIAM NASIONAL BERHAD.		

MY ALL X X G 03 002 O

April 2023

1 INTRODUCTION

PETRONAS Upstream business consists of Exploration, Development, Production and Malaysia Petroleum Management (MPM) and is a fully integrated business covering a subsurface and surface portfolio. In Upstream Reference & Master (R&M) Data Management Procedure (2022), it has illustrated the Upstream R&M Data hierarchy which is established based on geographical and asset hierarchy to show the top-down structure that demonstrates the relationship among Upstream assets. Thus, it is important to provide proper and meaningful name for the critical assets to ensure its consistency and uniqueness and improve the data quality.



Figure 1-1: Upstream R&M Hierarchy

MY ALL X X G 03 002 O

April 2023

1.1 Objective

The objective of the PETRONAS Upstream Naming Standard is to standardize the naming and coding for crucial asset/facilities of PETRONAS Upstream.

1.2 Scope

The PETRONAS Upstream Naming Standard includes the naming and coding for country code, basin, play, prospect, well, reservoir, perforation zone, terminal, platform, pipeline, and equipment.

1.3 Intended Audience

PETRONAS Upstream Naming Standard is intended for PETRONAS Upstream Malaysia Operations. PETRONAS Upstream Naming Standard shall be complied by all Upstream staffs including operations, contractors, vendors, and any other third-party manpower resources who are involved in Upstream data activities.

The naming standard mentioned in this document will be effective upon the approval of the document.

1.4 Document Hierarchy

The PETRONAS Upstream Naming Standard is a Level 2 document as described in Upstream Document Management Guideline.

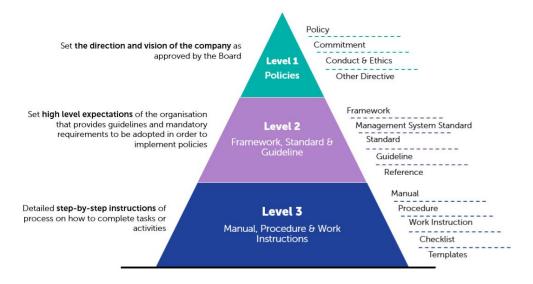


Figure 1-2: PETRONAS Document Structure

Open

MY ALL X X G 03 002 O

April 2023

Level	Document Category	Definitions	This Document (Y/N)
1	Policies	Rules, principles that are adopted or designed by	
		an organization to achieve long term goals	
	Commitment	A set of an agreement or pledge to do something	
		in the future	
	Conduct &	A well-written code of conduct clarifies an	
	Ethics	organization's mission, values and principles,	
		linking them with standards of professional	
		conduct	
	Other	A general rule, principle, or piece of advice form	
	Directives	as recommendation or guidance based on	
		practices, lesson learnt, experiences for	
		standardisation of practices	
2	Framework	The ideas, information, and principles that form	
		the structure of an organization or plan	
	Management System	A set of defined expectation on policies,	
		processes and procedures requirement used by	
		an organization to ensure that it can fulfil the tasks	
		required to achieve its objectives	
	Standards	A document designed to be used as a rule,	Υ
		guideline, definition or characteristic set by	
		recognized body or authority for common and	
		repeated use on activities or their results	
	Guidelines	A general rule, principle, or piece of advice form	
		as recommendation or guidance based on	
		practices, lesson learnt, experiences for	
		standardisation of practices	
	References	The use of a source of information in order to ascertain something	
		Ŭ	

Open

MY ALL X X G 03 002 O

April 2023

Level	Document Category	Definitions	This Document (Y/N)
3	Manual	A comprehensive and step-by-step guide to a particular matter and explain details what is given and required.	
	Procedures	A series of actions conducted in a certain order or manner.	
	Work Instructions	A document that provides specific instructions to carry out an Activity	
	Checklists	A set of checklists to guide the inspection, audit and assurance or any form of checks at activities level	
	Templates	A standard form of template for the use to facilitate the activities or support the issuance of output as a records	

1.5 Revision cycle

This document may be revised at least once every five (5) years.

MY ALL X X G 03 002 O

April 2023

1.6 Security Classification

Documents are classified into four security levels, which are based on content and their potential impact on the business. Business strategic documents typically have a higher level of security than operational documents due to the greater impact they may have on the business in the event of a security leak. The security classification categories of this document are marked in Table 1-1 below:

Table 1-1: Document Security Classification

Category	Description	Impact	This Document (Y/N)
SECRET or	Information which can	Documents which if	N
RAHSIA	be made available on a	wrongly exposed to	
	strict need-to-know	external parties could have	
	basis only to named and	significant impact to	
	authorised employees as	strategies, security,	
	it could cause major	company reputation and	
	damage to the interest	business opportunities of	
	of PETRONAS and its	PETRONAS and its	
	subsidiaries if disclosed	subsidiaries.	
	to unauthorised parties		
CONFIDENTIAL	Information that can be	Documents which if	N
or SULIT	shared with selected	wrongly exposed to	
	employees only as it	external parties could cause	
	could harm the interest	serious negative impact to	
	of PETRONAS and its	the business operations of	
	subsidiaries.	PETRONAS and its	
		subsidiaries.	

MY ALL X X G 03 002 O

April 2023

Category	Description	Impact	This Document (Y/N)
INTERNAL USE	Information that can be	Documents which if	Ν
or DALAMAN	shared internally and to	wrongly exposed to	
	authorized external	unauthorized external	
	parties.	parties could cause serious	
		negative impact to the	
		business administration of	
		PETRONAS and its	
		subsidiaries.	
OPEN or	Information that may be	Records which have	Y
TERBUKA	shared as it is unlikely to	negligible impact to	
	result in any harm if	PETRONAS if wrongly	
	disclosed to external	exposed to external parties.	
	parties		

MY ALL X X G 03 002 O

April 2023

1.7 Vital Classification

The Vital Classification defines the importance of a document for the continuation of business operations during and after a disaster. It protects the rights and interests of various parties, including PETRONAS Upstream, employees, customers, the public, etc. Vital documents are classified into 3 categories, as listed in Table 1-2 below:

Table 1-2: Vital Document Classification

Category	Description	This Document (Y/N)
Vital	Official documents that are essential to the continuous operation of the business. The documents cannot be replaced and copies are not available elsewhere. These documents shall be backed-up or protected.	N
Important	Official documents that contain valuable information for business continuity. Copies can be obtained from alternative sources but with great difficulty and considerable expenditure of time and money.	N
Useful	Official documents that are useful only for a limited time. The documents are replaceable and may cause some delays or inconvenience to the company should it be untraceable.	Y

MY ALL X X G 03 002 O
April 2023

2 COUNTRY

2.1 Definition

A country is a region that is identified as a distinct entity in political geography. A country may be an independent sovereign state or part of a larger state, as a non-sovereign or formerly sovereign political division, or a geographic region associated with sets of previously independent or differently associated people with distinct political characteristic.

2.2 Country Code

The standard for country code is produced by ISO 3166-1 Alpha 3. The format and criteria are explained in the following table:

Table 2-1: Country Code Format

Name	Format and Criteria
Country Code	3-digit country code which are identical to those country
	All words in capital letters

Examples of standard country code are as follow:

Table 2-2: Standard Country Naming and Code

Country Name	Country Code
INDONESIA	IDN
MALAYSIA	MYS
MYANMAR	MMR
OMAN	OMN
TURKMENISTAN	TKM

MY ALL X X G 03 002 O
April 2023

3 REGION

3.1 Definition

- A geological area in part of a country where the hydrocarbons were discovered in Malaysia.
- Region name should not be changed across time.

Figure 3-1: Region Name and Code

3.2 Region Name and Code

The standard format and criteria for the region name and code as per explained in the following table:

Table 3-1: Region Name and Code Format

Name	Format and Criteria	
Region Name	Shall be in full spelling	
	Capitalize the first character for each word	
	Have a space (" ") between the words	
Region Code	A 2 characters code (abbreviation) to uniquely iden-	
	the region	
	Shall be in capital letters	

I	MY ALL X X G 03 002 O
l	
ĺ	April 2023

Examples of regions name and code for Malaysia are as follow:

Table 3-2: Standard Region Name and Code

Region Name	Region Code
Peninsular Malaysia	PM
Sabah	SB
Sarawak	SK

MY ALL X X G 03 002 O
April 2023

4 ASSET NAME FOR PCSB

4.1 Definition

- Asset name which belongs to PCSB operation in Malaysia
- Region that ties to asset name can be changed from time to time based on management direction including organization structure change

4.2 Regional Asset Name and Code

The standard format and criteria for the region name and code as per explained in the following table.

Table 4-1: Regional Asset Naming and Code Format

Name	Format and Criteria	
Regional Asset	Shall be in full spelling	
Name	Capitalize the first character for each word	
	 Have a space (" ") between the words 	
	Have additional word that indicate it is an asset	
Regional Asset	A 3 characters code (abbreviation) to uniquely	
Code	identify the asset region for PCSB	
	All words in capital letters	

Examples of regions name and code for Malaysia are as follow:

Table 4-2: Standard Regional Asset Name and Code

PCSB Name	PCSB Code	
Peninsular Malaysia Asset	PMA	
Sabah Asset	SBA	
Sarawak Asset	SKA	
Peninsular Malaysia Operation	PMO	
Sabah Operation	SBO	
Sarawak Operation	SKO	

MY ALL X X G 03 002 O

April 2023

5 BASIN TO PLAY

5.1 Definition

Basin is a depression in the crust of the Earth, caused by plate tectonic activity and subsidence, in which led to sediments accumulation. The detailed explanation of basin in Malaysia has been stated in the book: The Petroleum Geology and Resource of Malaysia (PGRM 2.0) which have been segregated into Main Basin and Sub Basin/Province. Sub Basin or Province is defined as an outlier of sedimentary rocks or depocenter that appears to be part of larger sedimentary basin.

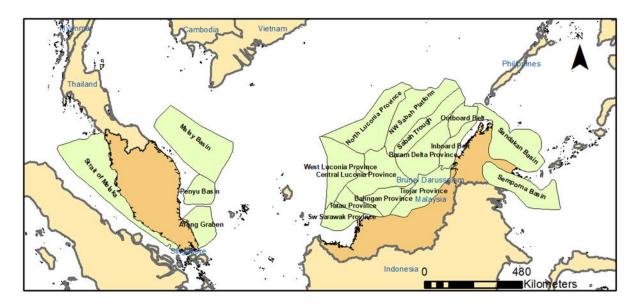


Figure 5-1: Main basin and Sub basin/province outline of Malaysia

The subdivision of main basins in Malaysia are listed based on geographical location under 1.2 Basin Standard Naming section followed as per The Petroleum Geology and Resource of Malaysia (PGRM 2.0) and the name updated by MPM should be adopted as a way forward.

Meanwhile, basins for International are referred from IHS Markit which the information also part of United States Geological Survey (USGS).

MY ALL X X G 03 002 O

April 2023

5.2 Basin Name

Basin standard naming is applicable for both main and sub basin and standardized for basin in Malaysia and International. The standard naming shall follow the following format:

Table 5-1: Basin Naming Format

Name	Format and Criteria		
Main Basin and Sub-Basin / Province Name	Should be written in full and short form is not		
	acceptable (Optional for ordinal directions. Eg:		
	Northwest as NW, Southwest as SW)		
	Capitalize the first alphabet for each word		
	Has a space (" ") between the words		

The naming convention for main basin as the following:

<Basin Location or Area> < > <Basin Term>

Table 5-2: Naming Convention for Basin

Basin and Sub-basin Name Format	Basin Location or Area	< >	Basin Term	Example Full Name
Format and Criteria	 Location or area of Basin. If basin connected to shore – name should be given based on the location If basin does not link to shore can add ordinal direction 		 Basin: Commonly add 'basin' or similar term in geology Sub-basin: Commonly add 'sub-basin' or similar term in geology (Eg: province, trough etc) 	
Example	Malay		Basin	Malay Basin

MY ALL X X G 03 002 O

April 2023

Basin and Sub-basin Name Format	Basin Location or Area	< >	Basin Term	Example Full Name
	Sandakan		Basin	Sandakan Basin
	NW Sabah		Basin	NW Sabah Basin
	Arong		Graben	Arong Graben
	Balingian		Province	Balingian Province
	Jambi		Sub-basin	Jambi Sub-basin

MY ALL X X G 03 002 O

April 2023

The main basins for Malaysia are as follow:

Table 5-3: Main Basin in Malaysia

Region Code	Main Basin
	Penyu Basin
PM	Malay Basin
	Straits of Melaka Basin
	*Arong Graben
SK	Sarawak Basin
	NW Sabah Basin
SB	*Sandakan Basin
	*Semporna Basin

(*Revised name: Arong Graben=Johor Platform, Sandakan Basin= NE Sabah and Semporna=SE Sabah)

MY ALL X X G 03 002 O

April 2023

Table 5-4: Examples of Main Basin and Sub-Basin/Province in Sarawak and Sabah regions

Main Basin	Sub-Basin / Province
	Central Luconia Province
	North Luconia Province
Sarawak Basin	West Luconia Province
Garawak Basii i	SW Sarawak Province
	Tatau Province
	Balingian Province
	Tinjar Province
	West Baram Delta Province
	NW Sabah Platform
	Inboard Belt
NW Sabah Basin	Outboard Belt
	Sabah Trough
	East Baram Delta Province

Note: The naming convention shall be applied for the new name

MY ALL X X G 03 002 O

April 2023

5.3 Play Name

Play is a stratigraphic interval containing a number of prospect objectives and/or discovered pools that share favorable geological conditions for hydrocarbon accumulation(s). Plays are separated by regional seals of initially unknown extent. The geographic extent of a play is defined by its mappable extent.

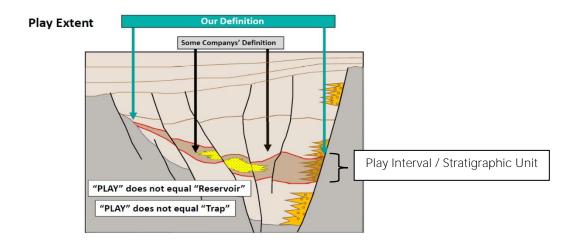


Figure 5-2: Play Illustration

The detailed explanation of Play is stated in the Play Based Exploration Guidebook which defines the Play name following the chronostratigraphic age of the play interval. The example of play standard naming for Malaysia basins are listed as per Table 5-6 and should be adopted as a way forward.

T	MY ALL X X G 03 002 O
	April 2023

The naming convention for play as follow:

<Epoch> < > <Stratigraphy>

Table 5-5: Play Naming Convention

Play Name Format	Epoch	<>	Stratigraphy	Example Full Name
Format and Criteria	 Epoch time zone based on the chronostratigraphic age Use full spelling for control vocabulary (Eg: Upper, middle, lower) Refer Table 5-10 column 'Epoch' 		 Stratigraphy unit for each region (Eg: Group, Cycle, Stage etc) Refer Table 5-10 	
	Miocene Upper		Group D	Miocene Upper Group D
	Pliocene		Cycle VI	Pliocene Cycle VI
Example	Miocene Middle		Stage IVA	Miocene Middle Stage IVA
	Miocene Lower		Stage III	Miocene Lower Stage III

MY ALL X X G 03 002 O	
April 2023	_

The naming convention for play's abbreviation as follow:

<Abbreviation of Epoch> <_> <Abbreviation of Stratigraphy>

Table 5-6: Play's Abbreviation Convention

Play Name	Abbreviation of	<_>	Abbreviation of	Example Full		
Format	Epoch		Stratigraphy	Name		
Format and Criteria	 Abbreviation of epoch No space Capital letter for the first character of epoch names 2 epoch names can be combined without space Refer Table 5-8 	Use '_' for spacing	 Abbreviation for Stratigraphy unit for each region (E.g.: Group, Cycle, Stage etc) No space Refer Table 5-9 			
Example	MioUpp Plio MioMid MioLwr	_ _ _	GrpD CycVI StgIVA StgIII	MioUpp_GrpD Plio_CycVI MioMid_StgIVA MioLwr_StgIII		

MY ALL X X G 03 002 O	
April 2023	

The abbreviation of control vocabulary for epoch and stratigraphy are as follow:

Table 5-7: Abbreviation of Epoch

Epoch Name	Epoch Abbreviation
Pleistocene	Pleist
Miocene	Mio
Oligocene	Oli
Eocene	Eoc
Mesozioc	Mz
Pliocene	Plio
Cretaceous	Cre
Upper	Upp
Middle	Mid
Lower	Lwr

Table 5-8: Abbreviation of Stratigraphic Nomenclature

Stratigraphic Nomenclature	Stratigraphic Nomenclature Abbreviation				
Group	Grp				
Pre-Cycle	PreCyc				
Cycle	Сус				
Stage	Stg				
Basement	Bsmnt				

MY ALL X X G 03 002 O

Table 5-9: Malaysia Play Naming Standard

Basin	Region Code	Sub basin/Provinces	Epoch Name	Top Age (Ma)	Bottom Age (Ma)	Stratigraphic Nomenclature	Play Name	Acronyms & Abbreviations	Play Name (proposed: Lower to Lower, Upper to Upper)	Acronyms & Abbreviations	Stratigraphic nomenclature & equivalent
			Pleistocene	0	1.9-2.52	Group A	Pleistocene Group A	Pleist_GrpA	Pleistocene Group A	Pleist_GrpA	
			Miocene Upper to Pleistocene	1.9-2.52	10.5	Group B	Miocene Upper to Pleistocene Group B	MioUpp_Pleist_GrpB	Miocene Upper to Pleistocene Group B	MioUpper_Pleist_GrpB]
			Miocene Upper	10.5	11	Group D	Miocene Upper Group D	MioUpp_GrpD	Miocene Upper Group D	MioUpper_GrpD	
			Miocene Middle to Miocene Upper	11	12.5	Group E	Miocene Middle to Miocene Upper Group E	MioMid_MioUpp_GrpE	Miocene Middle to Miocene Upper Group E	MioMid_MioUpper_Grp8	
			Miocene Middle	12.5	13.5	Group F	Miocene Middle Group F	MioMid_GrpF	Miocene Middle Group F	MioMid_GrpF	
			Miocene Middle	13.5	16	Group H	Miocene Middle Group H	MioMid_GrpH	Miocene Middle Group H	MioMid_GrpH	
Malay	PM	N/a	Miocene Lower	16	18.7	Group I	Miocene Lower Group I	MioLwr_GrpI	Miocene Lower Group I	MioLower_GrpI	N/a
			Miocene Lower	18.7	21	Group J	Miocene Lower Group J	MioLwr_GrpJ	Miocene Lower Group J	MioLower_GrpJ	
			Oligocene Upper	21	25.2	Group K	Oligocene Upper Group K	OliUpp_GrpK	Oligocene Upper Group K	OliUpper_GrpK	
			Oligocene Upper	25.2	30	Group L	Oligocene Upper Group L	OliUpp_GrpL	Oligocene Upper Group L	OliUpper_GrpL	
			Oligocene Lower	30	32	Group M	Oligocene Lower Group M	OliLwr_GrpM	Oligocene Lower Group M	OliLower_GrpM	
			Eocene	32	44	Group N+	Eocene Group N+	Eoc_GrpN	Eocene Group N+	Eoc_GrpN	
			Mesozoic	44	50	Basement	Mesozoic Basement	Mz_Bsmnt	Mesozoic Basement	Mz_Bsmnt	
			Pleistocene	0	1.85	Cycle VIII	Pleistocene Cycle VIII	Pleist_CycVIII	Pleistocene Cycle VIII	Pleis_CycVIII	
		North Luconia Province West Luconia Province Central Luconia Province South West Sarawak Province Tatau Province Balingian Province Tinjar Province West Baram Delta Province	Pliocene to Pleistocene	1.85	2.6-3.1	Cycle VII	Pliocene to Pleistocene Cycle VII	Plio_Pleist_CycVII	Pliocene to Pleistocene Cycle VII	Plio_Pleis_CycVII	
			Pliocene	2.6-3.1	5.2	Cycle VI	Pliocene Cycle VI	Plio_CycVI	Pliocene Cycle VI	Plio_CycVI	
			Miocene Middle to Miocene Upper	5.2	13.4	Cycle V	Miocene Middle to Miocene Upper Cycle V	MioMid_Upp_CycV	Miocene Middle to Miocene Upper Cycle V	MioMid_Upper_CycV	
Sarawak	SK		Miocene Middle to Miocene Upper	13.4	16.38	Cycle IV	Miocene Middle to Miocene Upper Cycle IV	MioMid_Upp_CyclV	Miocene Middle to Miocene Upper Cycle IV	MioMid_Upper_CyclV	N/a
			Miocene Lower	16.38	17.5	Cycle III	Miocene Lower Cycle III	MioLwr_CycIII	Miocene Lower Cycle III	MioLower_CycIII	
			Miocene Lower	17.5	19.3	Cycle II	Miocene Lower Cycle II	MioLwr_Cycll	Miocene Lower Cycle II	MioLower_Cycll	
			Oligocene	19.3	41.1	Cycle I	Oligocene Cycle I	Oli_Cyc I	Oligocene Cycle I	Oli_Cyc I	
			Cretaceous Upper to Eocene	41.1	66	Pre-Cycle I	Cretaceous Upper to Eocene Pre-Cycle I	CreUpp_Eo_PreCycl	Cretaceous Upper to Eocene Pre-Cycle I	CreUpper_Eo_PreCycl	
			Pleistocene	0	2	Stage IVG	Pleistocene Stage IVG	Pleist_StgIVG	Pleistocene Stage IVG	Pleis_StgIVG	Stage IVG (Lingan II)
			Pliocene to Pleistocene	2	3.1	Stage IVF	Pliocene to Pleistocene Stage IVF	Plio_Pleist_StgIVF	Pliocene to Pleistocene Stage IVF	Plio_Pleis_StgIVF	Stage IVF (Lingan II)
			Miocene Upper to Pliocene	3.1	4.1	Stage IVE	Miocene Upper to Pliocene Stage IVE	MioUpp_Plio_StgIVE	Miocene Upper to Pliocene Stage IVE	MioUpper_Plio_StgIVE	Stage IVE (Yellow/Lingan I/Lingan II)
		Inboard Belt	Miocene Upper	8.11	9.53	Stage IVD	Miocene Upper Stage IVD	MioUpp_StgIVD	Miocene Upper Stage IVD	MioUpper_StgIVD	Stage IVD (Pink/Kamunsu)
Sabah	SB	Outboard Belt SB East Baram Delta Province Sabah Trough	Miocene Upper	9.53	10.46	Stage IVC	Miocene Upper Stage IVC	MioUpp_StgIVC	Miocene Upper Stage IVC	MioUpper_StgIVC	Stage IVC (Kinarut)
, oubum			Miocene Upper	10.46	11.63	Stage IVB	Miocene Upper Stage IVB	MioUpp_StgIVB	Miocene Upper Stage IVB	MioUpper_StgIVB	Stage IVB (Kebabangan)
		NW Sabah Platform	Miocene Middle	11.63	14.2	Stage IVA	Miocene Middle Stage IVA	MioMid_StgIVA	Miocene Middle Stage IVA	MioMid_StgIVA	
	NW Sasairi Islanii		Miocene Lower	14.2	23.13	Stage III	Miocene Lower Stage III	MioLwr_StgIII	Miocene Lower Stage III	MidEar_StgIII	-N/a
			Oligocene	23.13	34.1	Stage II	Oligocene Stage II	Oli_StgII	Oligocene Stage II	Oli_StgII	
			Eocene	34.1	???	Stage I	Eocene Stage I	Eoc_Stgl	Eocene Stage I	Eo_Stgl	

MY ALL X X G 03 002 O

April 2023

6 LEAD, PROSPECT AND FIELD

6.1 Definition

This section will explain the naming standard for lead, prospect, and field name for Malaysia. The details of lead and prospect naming standard can be referred from the document titled: Prospect and Well Naming Standard for Malaysia Operations document. Meanwhile, field name should follow the inherited name with the same criteria of standard naming. The definitions are as follow:

- Lead: Any indication of the presence of potential subsurface accumulation which gives the explorationists a thinking base to explore further as more data is required to classify lead as a prospect
- **Prospect**: Potential viable drilling candidate with geological and geophysical evaluation, which sufficiently defines the potential accumulation, risk and associated resource estimation.
- Field: An area of land from where crude oil and natural gas is produced. The three (3) categories of fields are as follow:
 - Green Field: A new oil and gas field development
 - Brown Field: An oil or gas accumulation that has matured to a production plateau or even progressed to a stage of declining production
 - Abandoned Field: An oil field is referred to as abandoned if the economic limit of the well is reached.

6.2 Lead, Prospect and Field Name

The naming standard stated below is applicable for lead, prospect and field since it is interconnected to each other (Figure 6-1) and the name should be consistent throughout the time.

MY ALL X X G 03 002 O

April 2023

Figure 6-1: Illustration of Lead, Prospect and Field Area

Lead, prospect, and field name shall follow the following format:

Table 6-1: Format and Criteria of Lead, Prospect and Field Name

Name	Format and Criteria
Lead, Prospect and Field	 Lead/Prospect name should follow the 18 designated themes of the geological provinces/geographical area Naming Standard: Shall be in Malaysian word, with maximum 2 words and in full spelling No geographical location Written in CAPITAL LETTERS

MY ALL X X G 03 002 C)
April 2023	

Below are the examples of Lead, prospect and field name based on their respective themes:

Table 6-2: Example of Lead, Prospect and Field Name

Theme	Example Name
Flowers	BUNGA SETAWAR, BUNGA ANGGERIK
Animals	PELANDUK, RUBAH
Birds	MERBOK, PUNGGOK
Fruits	PISANG, MEMPELAM
Tales	KEBAYAN, LAKSAMANA

6.3 Field Code Standard

Each of approved field name shall have their field code (as abbreviation) since this field code will be part of standard naming convention for other assets (eg: pipeline, platform). Field code standard shall follow the following format (Table 6-3):

Table 6-3: Description of Field Code

Name	Description
Field	Maximum 4 character-code (Field name with the length of 2,3 and 4 will
Code	become it field code)
	Shall be in UPPERCASE
	It shall be a unique code for each field name. (In case of duplication
	derived from Rules Level 1, proceed to apply Rules Level 2 and Rules Level
	3)

MY ALL X X G 03 002 O
April 2023

Table 6-4 explains on the rules to establish standard field code, shall be a unique code for each field name. In case of duplication derived from Rules Level 1, Rules Level 2 and Rules Level 3 shall be apply. It consists of 4 scenarios which requires the assessment of number and length of words. Each scenario has several rules that need to be checked before the 4-character code can be generated.

Table 6-4: Field Code Standard Rules

					Examples			
Scenario	Description	Rules Level 1	Rules Level 2	Rules Level 3	Field Name	ne		
Scenario 1	Field name with special character	If repetitive name, take the first naming (if character length <=4)	If field name have other special character, eliminate all special character, then concatenate first 2 characters + first character from last word + last 1 character from last word	If field name have other special character, eliminate all special character, then concatenate first 2 characters + last 2 character from last word	AJI-AJI	AJI		
Scenario 2	1 word and word length <= 4	Take all characters	N/a	N/a	PAUS YU	PAUS YU		
Scenario 3			Concatenate first 4 characters		ARAPAIMA	ARAA		

Open

MY ALL X X G 03 002 O

					Exa	amples
Scenario	Description	Rules Level 1	Rules Level 2	Rules Level 3	Field Name	Field Code
	1 word and word length > 4	Concatenate first 3 characters + last 1 character		Concatenate first character + last 3 characters	JERUN	JERU
	2 words and	Concatenate first 2 characters from first word + first 2 characters from second word.	Concatenate first 2 characters from first word + last 2 characters from second word.	Concatenate first character from first word + first 3 characters from second word.	LADA HITAM TANJUNG PULAI	LAHI TGPU
Scenario 4	word length > 4	If Field Name contains BUNGA* or TANJUNG*, then BG or TG will be taken as code + First 2 characters from second word.	If Field Name contains BUNGA* or TANJUNG*, then BG or TG will be taken as code + Last 2 characters from second word.	If Field Name contains BUNGA* or TANJUNG*, then BG or TG will be taken as code + first and last character from second word.	BUNGA LILI	BGLI

MY ALL X X G 03 002 O

April 2023

7 WELL

This section explains on well naming standard that consist of well, wellbore and well string that make reference to **Prospect and Well Naming Standard for Malaysia Operations**.

7.1 Well Name

The criteria for well naming for each term are as follow:

Table 7-1: Well Naming and Code Format

Attribute	Format
	Field name will inherit the prospect name following the 18
	designated themes (refer to Prospect and Well Naming
Field Name	Standard for Malaysia Operations)
	No spacing allowed between <field> until <well bore<="" td=""></well></field>
	Sequence Number>
	1 Alphabet, e.g.: A, B, C, etc
Platform Suffix	Subsea X-mas tree and wellhead will have suffix of SS
	followed by drill center, e.g. SSA
Well Number	No spacing allowed between <field> until <well bore<="" td=""></well></field>
Well Ivallibel	Sequence Number>
Wellbore Type	"ST" for side-track, "RDR" for re-drilled, "RE" for re-entry and
Wellbore Type	"L" for Multi-lateral are the only abbreviations allowed
	The <well bore="" number="" sequence=""> drilled after the initial</well>
Wellbore Sequence	well drilled should be in ascending order.
Number	No spacing allowed in between <field> until <well bore<="" td=""></well></field>
	Sequence Number>
Completion String	"TS" for tubing string (applicable for single completion), "LS"
Type	for long string and "SS" for short string (applicable for dual
1,400	completion) are the only abbreviations allowed.

MY ALL X X G 03 002 O

April 2023

Well naming and code standard shall follow the following format.

- For development well:
- <Field/Area Name> <-> <Platform Suffix> <Well Number> <Wellbore Type> <Wellbore Sequence Number>
- For production well, the name should end with completion string type:
- <Field/Area Name> <-> <Platform Suffix> <Well Number> <Wellbore Type>
 <Wellbore Sequence Number> <-> <Completion String Type>

Table 7-2: Well Naming Convention

Well Name Format	Field / Area Name	-	Platform Suffix	Well Number	Wellbore Type	Wellbore Sequence Number	-	Completion String Type	Example Well Name
TOTTIAL	Mandatory		Mandatory	Mandatory	Optional	Optional		Mandatory	
Format	Variable length	-	A B ZZ	1 2 999	RDR ST L	1 2 99	1	TS SS LS	
Example	ANGSI	-	А	2	-	-	-	TS	ANGSI-A2-TS
Example	ANGSI	-	В	25	ST	1	-	LS	ANGSI- B25ST1-LS

In summary, if it is wellbore name, it will be ANGSI-A2, but if it related until well string name, it will be ANGSI-A2-TS. The following table shows if field code is used (followed the field code)

Table 7-3: Well Code Convention

Well Name Code	Field / Area Code	-	Platform Code	Well Number	Wellbore Type	Wellbore Sequence Number	-	Completion String Type	Example Well Code
Format	2 to 4- character length	-	A B ZZ	1 2 999	RDR ST L	1 2 99	I	TS SS LS	
Example	ANSI	-	А	2			-	TS	ANSI-A2-TS
Lxample	ANSI	-	В	25	ST	1	-	LS	ANSI-B25ST1- LS

Open

MY ALL X X G 03 002 O

April 2023

8 RESERVOIR AND PERFORATION

Standard naming scope and guiding principles:

- This chapter only covers data standard naming convention for:
 - a) Reservoir
 - b) Perforation Zone
- The naming standard defined is intended to Malaysia.
- The reservoir and perforation zone naming exception is applicable to the below:
 - a) Historical reservoir and perforation zone
 - b) Inherited reservoir name within the same location
- However, renaming the existing reservoir and perforation zone following the new standards will require discretion from MPM line departments.

8.1 RESERVOIR

8.1.1 Definition

A subsurface rock formation that contains an individual and separate natural accumulation of petroleum that is confined by impermeable (or less permeable) barriers, pressure systems, or fluid regimes (conventional reservoirs), or is confined by hydraulic fracture barriers or fluid regimes (unconventional reservoirs).

The common types of lithology units are carbonate and clastic reservoirs. The carbonate reservoirs are generally less homogeneous than clastic reservoirs and have a wider range of grain size distribution.

MY ALL X X G 03 002 O

April 2023

Figure 8-1: Illustration of reservoir

8.1.2 Reservoir Name

This section explains the standard naming convention for reservoir which consists of stratigraphic unit, lithology unit, sub-sand unit, fault block and compartment. The description for each item is in Table 8-1 below. Please refer to Figure 8-2, 8-3 and 8-4 for better understanding on the illustration of reservoir naming.

Table 8-1: Description of reservoir components

Name	Description
Stratigraphic Unit	 A stratigraphic unit is a volume of rock of identifiable origin and relative age range that is defined by the distinctive and dominant, easily mapped, and recognizable petrographic, lithologic or paleontologic features (facies) that characterize it. Reservoir usually can be found due to existence of fault block. Each fault block may contain multiple reservoirs based on different formation and rock properties. But the same reservoir can be present in different fault blocks at different depths (Eg: Reservoir A)
Lithology Unit	The characteristic of sediments, rocks, and rock types present in a stratigraphic division of earth.

Open

MY ALL X X G 03 002 O

Name	Description
	 Physical characteristics include color, texture, grain size, and composition. The main type of formation at specific reservoir layer (Eg: Reservoir A1)
Sub-sand Unit	 Refers to variations in the unit due to the sudden drastic changes of gamma or resistivity properties. For example, a sandstone unit that has a different grain-size, which may show a different environment of deposition. (Eg: Reservoir A1.1)
Fault Block	 Formation block that is created by tectonic and localized stresses. Large areas of bedrock are broken up into blocks by faults. Blocks are characterized by relatively uniform lithology. Fault block will be measured starting from North (0°) and followed by clockwise rotation.
Compartment	The relative direction of the reservoir boundaries due to a variety of geological and fluid dynamic factors

MY ALL X X G 03 002 O

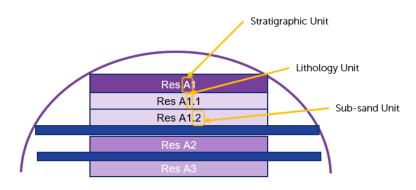


Figure 8-2: Illustration of reservoir

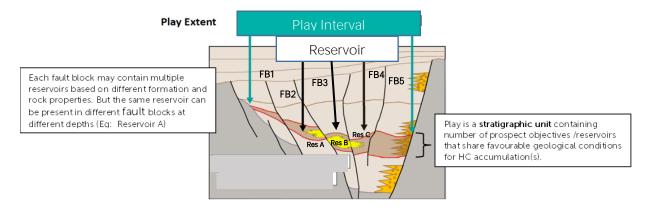


Figure 8-3: Example illustration of stratigraphic, unit/pray, reservoir, and fault block

MY ALL X X G 03 002 O

April 2023

The overall illustration as shown in Figure below is to visualize the naming reservoir.

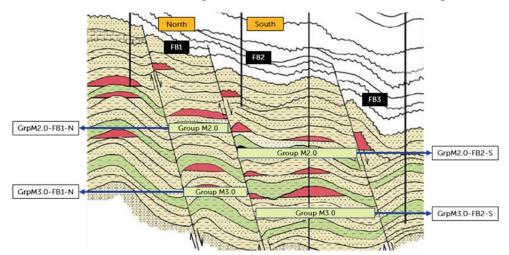


Figure 8-4: Example illustration of reservoir and perforation zone

The reservoir naming convention stated is as follows:

<Stratigraphic Unit> <-> <Lithology Unit> <.> <Sub-sand Unit (Optional)> <-> <Fault Block (Optional)> <-> <Compartment (Optional)>

MY ALL X X G 03 002 O

Table 8-2: Reservoir Naming Convention

Reservoir Format	Stratigraphic Unit	Lithology Unit	<.>	Sub-sand Unit	<->	Fault Block	<->	Compartment	Example Reservoir Name
Criteria/s	Stratigraphic unit inherit from the Play Naming Standard Use the reservoir abbreviation (Grp, Cyc, Stg) for each region followed by its reservoir group (Refer to Table 8-3)	 If the lithology unit is clastic, it will have sand unit If the lithology unit is carbonate, there is no sand unit Optional if there is lithology unit being specified 		 Only applicable for clastic lithology Optional if there is sub-sand unit being specified 		Sequence number of fault block starting with FB1, FB2 and so on for those that have fault block and Optional for those that doesn't have fault block In capital letters No space, or special character		 Abbreviation of compartment's relative direction (Refer to Table 8-4) Optional if there is compartment In capital letters 	

|--|

Reservoir Format	Stratigraphic Unit	Lithology Unit	<.>	Sub-sand Unit	<->	Fault Block	<->	Compartment	Example Reservoir Name
	GrpK	30	N/a	N/a	-	FB1	-	SOUTH → S	GrpK30-FB1-S
	GrpK	28	N/a	N/a	-	N/a	-	NORTH→N	GrpK28-N
Example	GrpM	3		5	-	N/a	-	EAST → E	GrpM3.5-E
	CyclV	N/a	N/a	N/a	-	FB2	-	CENTRAL → C	CycIV-FB2-C
	StgIVA	N/a	N/a	N/a	-	FB3	-	SOUTHEAST → SE	StgIVA-FB3-SE
	GrpK	28/30	N/a	N/a	-	N/a	-	NORTH→N	GrpK28/30-N

MY ALL X X G 03 002 O

Table 8-3: Stratigraphic Unit

Region	Stratigraphic	Stratigraphic		
Code	Nomenclature	Abbreviations		
	Group A	GrpA		
	Group B	GrpB		
	Group D	GrpD		
	Group E	GrpE		
	Group F	GrpF		
	Group H	GrpH		
PM	Group I	Grpl		
	Group J	GrpJ		
	Group K	GrpK		
	Group L	GrpL		
	Group M	GrpM		
	Group N	GrpN		
	Basement	Bsmnt		
	Cycle VIII	CycVIII		
	Cycle VII	CycVII		
	Cycle VI	CycVI		
SK	Cycle V	CycV		
JK.	Cycle IV	CycIV		
	Cycle III	CycIII		
	Cycle II	CycII		
	Cycle I	Cycl		
	Stage IVG	StgIVG		
	Stage IVF	StgIVF		
	Stage IVE	StgIVE		
SB	Stage IVD	StgIVD		
	Stage IVC	StgIVC		
	Stage IVB	StgIVB		
	Stage IVA	StgIVA		

MY ALL X X G 03 002 O	
April 2023	

Region Code	Stratigraphic Nomenclature	Stratigraphic Abbreviations		
	Stage II	Stgll		
	Stage I	Stgl		

Table 8-4: Compartment Direction

Compartment Direction	Abbreviation
North	N
South	S
East	E
West	W
Northeast	NE

Compartment Direction	Abbreviation
Southeast	SE
Northwest	NW
Southwest	SW
Central	С

8.2 PERFORATION ZONE

8.2.1 Definition

A hole made through the casing and cement and into the formation. It has a characteristic entrance hole and penetration. It is the flow path from the formation to the wellbore in a cased and cemented completion.

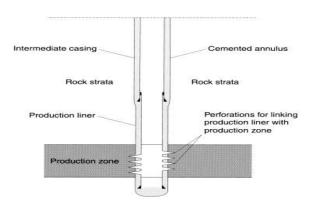


Figure 8-5: Illustration of Perforation Zone

MY ALL X X G 03 002 O

April 2023

8.2.2 Perforation Zone Name

This section explains the standard naming convention for perforation zone which consists of well string, fault block, stratigraphic unit, lithology unit and sub-sand unit. The description for each item is as follows:

Table 8-5: Description of Perforation Zone

Name	ne Description	
Well String	 A long section of connected pipe that is lowered into a wellbore and cemented Well string name is the combination of field, platform suffix, well number, wellbore type and wellbore 	
	sequence number (Refer to document Prospect and Well Naming Standards for Malaysia Operations)	
Reservoir Name	 Refer to Section 2.0 Reservoir name is the combination of fault block, stratigraphic, lithology, and sub-sand Unit 	

	MY ALL X X G 03 002 O
I	April 2023

The Perforation Zone naming standard shall follow the following format:

<Well String> <-> <Reservoir Name>

Table 8-6: Perforation Naming Convention

Format	Well string Name	1	Reservoir Name	Example Perforation Full Name
Format and Criteria	 Combination of Field, Platform Suffix, Well Number, Wellbore Type, Wellbore Sequence Number and Completion String Type In capital letter 	1	 Combination of stratigraphic, lithology, sub-sand unit and fault block In capital letter except for reservoir group abbreviation (Grp, Cyc, Stg) 	Note: Perforation names listed here are provided as examples. These examples may be different from existing (legacy) names.
	ANGSI-A2-SS		GrpK30-FB1-S	ANGSI-A2-SS-GrpK30-FB1-S
Example	DULANG-A17ST1-LS	-	GrpK28-N	DULANG-A17ST1-LS-GrpK28-N
	ANJUNG-A2-TS		CycIV-FB2-C	ANJUNG-A2-TS-CycIV-FB2-C
	ERB WEST-B214-TS		StgIVA-FB3-SE	ERB WEST-B214-TS-StgIVA-FB3-SE
	F9-A5-TS		CycIV/V	F9-A5-TS-CycIV/V
	DULANG-A16-LS		GrpK28/30-N	DULANG-A16-LS-GrpK28/30-N
	SAMARANG-B37-TS	-	StgIVD5.0/5.5-FB1	SAMARANG-B37-TS-StgIVD5.0/5.5-FB1

MY ALL X X G 03 002 C	MY	ALL	XX	G	03	002	0
-----------------------	----	-----	----	---	----	-----	---

April 2023

The perforation code naming standard shall follow the following format:

<Well String Code> <-> <Reservoir Name>

Table 8-7: Perforation Code Convention

Perforation Code Format	Well String Code	-	Reservoir	Example Perforation Code
Format and Criteria	 Combination of Field Code, Platform Suffix, Well Number, Wellbore Type, Wellbore Sequence Number and Completion String Type In capital letter 	-	 Combination of stratigraphic, lithology, sub-sand unit and fault block In capital letter except for reservoir group abbreviation (Grp, Cyc, Stg) 	Note: Perforation code listed here are provided as examples. These examples may be different from existing (legacy) names.
	ANSI-A2-SS	_	GrpK30-FB1-S	ANSI-A2-SS-GrpK30-FB1-S
	DULG-A17ST1-LS	-	GrpK28-N	DULG-A17ST1-LS-GrpK28-N
	ANJG-A2-TS	-	CycIV-FB2-C	ANJG-A2-TS-CycIV-FB2-C
Example	ERBW-B214-TS	-	StgIVA-FB3-SE	ERBW-B214-TS-StgIVA-FB3-SE
	F9-A5-TS	-	CycIV/V	F9-A5-TS-CycIV/V
	DULG-A16-LS	-	GrpK28/30-N	DULG-A16-LS-GrpK28/30-N
	SMRG-B37-TS	-	StgIVD5.0/5.5-FB1	SMRG-B37-TS-StgIVD5.0/5.5-FB1

Open

MY ALL X X G 03 002 O

April 2023

9 TERMINAL

The naming exception for terminal is applicable to the below:

- a) Historical facilities name
- b) Inherited facilities name within the same location.

However, renaming the facilities following the new standards will require jurisdiction from MPM line departments.

9.1 Definition

An industrial facility used to store oil and/or petrochemical products and transport product to the end user or further storage facilities. This facilities in Upstream can be grouped into 2 types: Terminal and Integrated Facilities. The details description for each of it as per stated in Table 9-1 below.

Table 9-1: Terminal and Integrated Facilities description

Types	Description
Terminal	Onshore Terminal which received Processed and/or partially
	processed Hydrocarbon from Offshore platforms. The
	Terminal inclusive of related Required Facilities for storage
	and Processing of specific hydrocarbon (Crude Oil or gas) at
	required sales quality
Integrated	Integrated Onshore Terminal which received processed
Facilities	and/or partially processed Hydrocarbon from Offshore
	platforms. The Terminal is a combination of 2 Specific
	Plants (Crude oil and Gas) that has Facilities for storage and
	Processing at required sales quality

MY ALL X X G 03 002 O

Figure 9-1: Terminal

Figure 9-2: Integrated Facilities

MY ALL X X G 03 002 O
April 2023

9.2 Terminal and Integrated Facility Name

Terminal name shall be the official name used within upstream or across businesses.

The terminal naming convention, provide guide and format in naming a terminal. The terminal name general format and criteria as follows.

Table 9-2: Terminal Name General Format

Name	Format and Criteria
Terminal	Shall be in full spelling
Name	Have a space (" ") between the words

MY ALL X X G 03 002 O

April 2023

Terminal name shall comply with the following format:

<Location><Fluid Type><Terminal><Terminal/Train Number (Optional)>

Table 9-3: Terminal Name Format

Terminal Name Format	Location	Fluid Type	Terminal	Terminal/Train Number	Example Full Name
Format and Criteria	The location (district) of terminal that has been built and operated	Fluid type (hydrocarbon) that being processed at this terminal	End with 'TERMINAL' words	Optional; only add the numbering at the end which starts with 2 to indicate that there is more than one integrated facility in same location	
	Labuan	Gas	Terminal	N/a	Labuan Gas Terminal
	Labuan	Gas	Terminal	2	Labuan Gas Terminal 2
Example	Miri Crude Oil		Terminal	N/a	Miri Crude Oil Terminal
	Bintulu	Crude Oil	Terminal	N/a	Bintulu Crude Oil Terminal

MY ALL X X G 03 002 O	

April 2023

If more than one terminal at the same location, it will be grouped into one main integrated facility with the following format:

<Location><Function of Facilities><Facilities><Facility Number>

Table 9-4: Integrated Facilities Naming Convention

Integrated Facilities Name Format	Location	Function of Facilities	Facilities	Facility Number	Example Full Name	Remark
Format and Criterla	The location (district) of facilities that has been built and operated	Comprise of crude oil, condensate, and gas operations	End with 'FACILITIES' words	Optional; only add the numbering at the end which starts with 2 to indicate that there is more than one integrated facility in same location		
	BINTULU	Integrated	Facilities	N/a	BINTULU Integrated Facilities	Consists of BSTAB 1-8
Example	BINTULU	Integrated	Facilities	2	BINTULU Integrated Facilities 2	ORF and processing facility for Rosmari and Majoram fields
	BINTULU	Integrated	Facilities	3	BINTULU Integrated Facilities 3	ORF and processing facility for LLB and B14 fields

MY ALL X X G 03 002 O					
April 2023					

9.3 Terminal and Integrated Facility Code

All terminals shall be identified by a terminal code as a unique identification that describe the basic detail of the terminal such as location, fluid type and type of terminal. Terminal code is extracted from the terminal full name and shall comply to the following format:

<Location> <Fluid Type> <Abbreviation of Terminal> <Terminal/Train Number (Optional)>

This terminal code should have maximum 7 characters code to uniquely identify the terminals.

Table 9-5: Terminal Code Format

Terminal Code Format	Location	Fluid Type	Abbreviation of Terminal	Terminal / Train Number	Example Code
Format and Criteria	 Abbreviation of the location name 1 or 2 characters All in capital letters 	 Abbreviation of Fluid type All in capital letters Maximum 3 characters code 'CO' for crude oil and 'GAS' for gas 'CONDY' for condensate stabilization. 	 'T' for terminal In capital letters 	Optional; only add the numbering at the end which starts with 2 to indicate that there is more than one integrated facility in same location	
	Labuan→ L	GAS	T	N/a	LGAST
	Labuan → L	GAS	Т	2	LGAST2
	Miri →M	CO	T	N/a	MCOT
Example	Bintulu → B	CO	Т	N/a	ВСОТ
	Bintulu → B	CONDY	Т	N/a	BCONDYT (currently known as BSTAB)
	Sabah → SB	GAS	Т	N/a	SBGAST

Open

MY ALL X X G 03 002 O
April 2023

For integrated facilities, the code shall comply as following format:

<Location> <Function of Facilities> <Facilities>

Table 9-6: Integrated Facilities Code Format

Integrated Facilities Code Format	Location	Function of Facilities	Facilities	Example Code
Format and Criteria	Abbreviation of the location name1 or 2 charactersAll in capital letters	'I' for integratedIn capital letters	'F' for facilitiesIn capital letters	
Example	Bintulu → B	I	F	BIF
Example	Kimanis → K	I	F	KIF (existing name SOGT)

MY ALL X X G 03 002 O

April 2023

10 PLATFORM

The naming exception for platform is applicable to the below:

- a) Historical facilities name
- b) Inherited facilities name within the same location

However, renaming the facilities following the new standards will require jurisdiction from MPM line departments.

10.1 Definition

In general, a platform is an offshore oil, gas or oil and gas platform, or drilling rig, that has a large structure with facilities for well drilling to explore, extract, store, and process petroleum and natural gas that lies in rock formation beneath the seabed.

In the context of standard naming convention, platform can be split into 2 categories: fixed platform and floater with the descriptions as follow:

Fixed Platform:

- A platform is built on concrete or steel legs, or both, anchored directly onto the seabed, supporting the deck with space for drilling rigs, production facilities and crew quarters.
- Its main characteristic is the fixation by means of steel piles in the maritime soil as it designed for long-term use
- Platform name is defined based on its type and the specific function at the specific location

MY ALL X X G 03 002 O

April 2023

Figure 10-1: Fixed Platform

Floater:

- It is a column-stabilized mobile offshore platform or a surface mobile offshore platform.
- As a floating vessel used by the offshore oil and gas industry for the production and processing of hydrocarbons, and for the storage of oil.

Figure 10-2: Floater

MY ALL X X G 03 002 O

April 2023

10.2 Fixed Platform Name and Code

Fixed Platform naming standard shall follow the following format:

<Field Name> <space> <Platform Function> <-> <Platform Suffix>

Table 10-1: Fixed Platform Naming Standard

Platform Name Format	Field Name	<>	Platform Type/Function	1	Platform Suffix	Platform Full Name
Format and Criteria	 Field name of which platform is located All in capital letters 	< >	 Type or function of platform Refer table 10-5 and Glossary section for definition of each platform function 	-	 One alphabet or maximum 2 alphabets to indicate the sequence of platform in particulate field In capital letter Optional for central processing and living quarters platform 	
	ANGSI BARAM		Drilling Platform	-	А	ANGSI Drilling Platform-A
			Jacket Platform	-	Н	BARAM Jacket Platform-H
Example	DUYONG		Central Processing Platform		N/a	DUYONG Central Processing Platform
	BARONIA		Central Processing Platform	-	В	BARONIA Central Processing Platform-B

MY ALL X X G 03 002 O

April 2023

Platform Name Format	Field Name	<>	Platform Type/Function	-	Platform Suffix	Platform Full Name
	BEKOK		Flare Platform	_	С	BEKOK Flare Platform-C
	BAKAU		Vent Platform	-	А	BAKAU Vent Platform-A
	DULANG		Power Platform	_	D	DULANG Power Platform-D

Fixed Platform code abbreviation standard shall follow the following format:

<Field Code> <-> <Platform Function Abbreviation> <-> <Platform Suffix>

Table 10-2: Fixed Platform Code Abbreviation Standard

Platform Name Format	Field Name Prefix	-	Platform Function Abbreviation	-	Platform Suffix	Platform Code
Format and Criteria	 Standard 4- characte r code for field All in capital letters 	-	 Abbreviatio n for platform function All in capital letters Refer Table 10-5 	-	 One alphabet or maximum 2 integers to indicate the sequence of platform in particulate field In capital letter Optional for central processing and living quarters platform 	

MY ALL X X G 03 002 O

April 2023

Platform Name Format	Field Name Prefix	-	Platform Function Abbreviation	1	Platform Suffix	Platform Code
	ANGSI → ANSI	-	DP	1	А	ANSI-DP-A
	BARAM → BARM	-	JT	-	А	BARM-JT-A
	DUYONG → DYNG	-	CPP	N / a	N/a	DYNG-CPP
Example	BARONIA → BRNA	-	CPP	1	В	BRNA-CPP-B
	BEKOK → BEKK	-	F	1	С	BEKK-F-C
	BAKAU → BAKU	-	V	1	А	BAKU-V-A
	DULANG → DULG	-	PW(S)	-	D	DULG-PW-D

MY ALL X X G 03 002 O

April 2023

10.3 Floating Platform Name and Code

Floating Platform naming standard shall follow the following format:

<Field Name> <Space> <Floater Function><-><Floater Suffix>

Table 10-3: Floater Naming Standard

Floater Name Format	Field Name	<>	Floater Function	-	Floater Suffix	Floater Full Name
Format and Criteria	 Field name of which platform is located. All in capital letters Use owner /company name for enterprise asset 	< >	 Type or function of floater Refer Table 10-6 	-	Optional; one alphabet or maximum 2 integers to indicate the sequence of platform in particular field. In capital letter	
	BERGADING		Floating, Storage and Offloading	N/a	N/a	BERGADING Floating, Storage & Offloading
Example	KIKEH		Floating, Production, Storage and Offloading	N/a	N/a	KIKEH Floating, Production, Storage & Offloading
Lample	DANA		Mobile Offshore Production Unit	N/a	N/a	DANA Mobile Offshore Production Unit
	PETRONAS		Floating Liquified Natural Gas	-	1	PETRONAS Floating Liquified Natural Gas-1

MY ALL X X G 03 002 O

April 2023

Floater code abbreviation standard shall follow the following format:

<Field Code> <Space> <Floater Function Abbreviation> <-> <Floater Suffix>

Table 10-4: Floater Code Abbreviation Standard

Platform Name Format	Field Name	< >	Floater Function Abbreviation	-	Floater Suffix	Floater Code
Format and Criteria	 Field name of which platform is located. All in capital letters Use owner/company for enterprise asset 	<>	 Abbreviation of type or function of floater All in capital letters Refer Table 10-6 	 Dash between platform function and suffix Optional if there is any floater suffix available 	Optional; one alphabet or maximum 2 integers to indicate the sequence of platform in particulate field In capital letter	
	BERGADING		FSO	N/a	N/a	BERGADING FSO
Example	KIKEH		FPSO	N/a	N/a	KIKEH FPSO
	DANA		MOPU	N/a	N/a	DANA MOPU
	PETRONAS 🗲		FLNG	-	1	PFLNG-1

MY ALL X X G 03 002 O
April 2023

Platform & Floater Abbreviation

Below is the type of platform function and its abbreviation that used as part of platform naming convention.

Table 10-5: Platform Function Abbreviation

No	Platform Function	Platform Function Abbreviation
1	Central Processing Platform	СРР
2	Compression Platform	К
3	Co2 Injection Storage Platform	CCS
4	Drilling Platform	DP
5	Flare Platform	F
6	Jacket Platform	JT
7	Living Quarter	LQ
8	Gas Injection Platform	GI
9	Gas Processing	GP
10	Riser Platform	R
11	Subsea	SS
12	Vent Platform	V
13	Wellhead Support Structure	WHSS
14	Water Injection Platform	WI
15	Water & Gas Injection Platform	WG
1/	Power Platform	PW
16	(abbreviation for type of power: solar=S, wind=W, solar & wind=SW, hydrogen=H, gas=G)	Eg: PW(S), PW(SW)

MY ALL X X G 03 002 O

April 2023

Floater function and its' abbreviation are as follow:

Table 10-6: Floater Function Abbreviation

No	Floater Function	Floater Function Code
1	Floating Storage Unit	FSU
2	Floating Production Storage & Offloading	FPSO
3	Floating Storage & Offloading	FSO
4	Floating Liquified Natural Gas	FLNG
5	Mobile Offshore Production Unit	MOPU
6	Semisubmersible Floating Production Unit	SFPU
7	Floating Compress Natural Gas	FCNG
8	Tension-Leg Platform	TLP
9	SPAR	SPAR

MY ALL X X G 03 002 O

April 2023

11 PIPELINE

The naming exception for terminal is applicable to the below:

- a) Historical facilities name
- b) Inherited facilities name within the same location

However, renaming the facilities following the new standards will require jurisdiction from MPM line departments depending on the well phase (exploration, development and production) on a case-by-case basis.

11.1 Definition

Pipeline is a tube or system of tubes used for transporting crude oil and natural gas from the field or gathering system to the refinery.

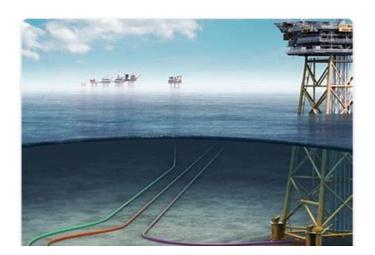


Figure 11-1: Pipeline Example

Practically, each of pipeline will have their own pipeline ID as per stated in engineering drawing with the indication of the pipeline start and end point as shown below:

```
EXISTING 6" GL BYP-A R6 to BYDP-B R3 (PL270)

EXISTING 6" GAS2 BYDP-B R2 to BYP-A R7 (PL271)

EXISTING 8" OIL BYDP-B R to BYP-A R8 (PL272)
```

Figure 11-2: Example pipeline name in engineering drawing

T	MY ALL X X G 03 002 O
	April 2023

11.2 Pipeline ID and Name

Pipeline ID is one of the important elements as part of pipeline standard naming convention. The following Table explains on format and criteria for pipeline ID.

The naming convention for pipeline ID is as follow:

<Region Code> <Pipeline Abbreviation> <Pipeline Running Number> <Pipeline Replacement Suffix (Optional)>

Table 11-1: Pipeline ID Standard

Pipeline ID Format	Region Code	Pipeline Abbreviation	ID Number	Pipeline Replacement Suffix	Example Full Pipeline ID
Format and Criteria	the respective	Abbreviation of pipeline	Sequence running numberStart with '0'	 Alphabetical order Any replacement pipeline contains additional suffix at the end Eg: A, B, C 	
	PM	PL	047	N/a	PMPLO47
Example	SK	PL	002	N/a	SKPL002
	SB	PL	109	N/a	SBPL109
	SB	PL	109	А	SBPL109A

Below are the general format and criteria for the pipeline standard naming convention:

MY ALL X X G 03 002 O

April 2023

Table 11-2: Pipeline Naming Format

Name	Format and Criteria				
Pipeline	Start with from location and to location to indicate the start and				
Naming	end point of pipeline				
	 Use the correct abbreviation of facility (E.g.: standard naming 				
	convention of platform name)				
	 Maximum 40-character length (including abbreviation of 				
	location, space, '/' and '-'between the words)				

MY ALL X X G 03 002 O
April 2023

Naming Convention:

<From Location> </> <To Location> <space> <Outer Diameter> <space> <Pipeline Service> <space> <Pipeline ID>

Table 11-3: Pipeline Name Convention

Pipeline Name Format	From Location		To Location	< >	Outer Diameter	< >	Pipeline Service	<>	Pipeline ID	Example of Pipeline Full Name
Format a Criteria	uppercase	/	To location or facility written in uppercase Use standard name/code (standard abbreviation)	< >	 Outer diameter of the pipeline denoted by numbers Unit in inch symbol (") 	< >	 Type of product being transported thru the pipeline First character is uppercase 	< >	ID denoted by number/ alphabet	
Example	BARM-KP-B	/	BARM-JT-H	< >	6"	< >	Gas	< >	345	BARM-KP-B/BARM-JT-H 6" Gas 345
	TMNA-JT-T	/	TMNA-JT-C	< >	6"	< >	Oil	< >	245	TMNA-JT-T/TMNA-JT-C 6" Oil 245

Open

PETRONAS UPSTREAM Page | 60

MY ALL X X G 03 002 O

April 2023

Pipeline content is required to mention on the functionality of the pipeline. For example, the pipeline is built to transport oil or gas from location A to location B. Other example is the pipeline is used to transport electrical power for subsea facility.

Figure 11-3: Pipeline in Subsea Area (Known as umbilical)

The details of pipeline content are described in the following table:

Table 11-4: Proposed Pipeline Naming Standard Format

Pipeline Content	Description
Oil	Indicate pipeline for oil production
Gas	Indicate pipeline for gas production
Condensate	Indicate pipeline for condensate production
CO2	Indicate pipeline for transporting the carbon dioxide
Full Well Stream (FWS)	Indicate pipeline for multiphase production
GI	Indicate pipeline for gas injection
WI	Indicate pipeline for water injection
Umbilical	Indicate pipeline for electrical power/hydraulic/instrumentation supply via umbilical for subsea platform
Power	Subsea cable for power transmission

MY ALL X X G 03 002 O

April 2023

12 EQUIPMENT

12.1 Definition

Equipment is a physical machine or device to meet specific purposes. In the oil and gas industry, equipment is part of production facilities within a system or process unit comprising of various equipment used to gather pump, compress, process, measure, store or dispose of petroleum, natural gas, water, or a substance.

All equipment shall be identified by an equipment tag number as unique identification that describe the basic detail of the equipment such as equipment type, the supporting functions, process unit, sequence number and suffix for the identical equipment. This document, which adopt PTS 12.00.02 - Symbols and Identification System – Mechanical, would serve as Addendum for Upstream users to further understand the content of the PTS via examples to promote clarity in defining Equipment Tag Number Convention.

12.2 Equipment Tag Number Convention

The equipment tag number shall comply to the following convention:

Equipment tag number convention: <AA>-<XXX><YY><Z>

Table 12-1: Equipment Tag Number Convention

Tag No. Convention	AA	-	XXX	YY	Z
Equipment Code Format	Equipment Functions*	Separator	Process Unit	Sequence Number	Identical Equipment Suffix
Format and Criteria	Consists of one or two-letter code.	Consists of a dash (-)	Consists of one, two or three-digit	Consists of two-digit.	Consists only one-letter code
Requirement	Mandatory	Mandatory	Mandatory	Mandatory	Optional (As and when applicable

MY ALL X X G 03 002 O

April 2023

Tag No.	AA		XXX	YY	Z
Convention	AA		^^^		L
K-16411A	K	-	164	11	А
K-16411B	K	-	164	11	В
GT-207S	GT	-	2	07	S
E-2306	E	-	23	06	

Note:* For identical equipment in parallel train, the Equipment Functions need to include one-digit code Train Number after the Equipment Functions code. Refer to Train Number for Parallel Train in Section 12.2.1.1 for more details.

RULES FOR EQUIPMENT TAG NUMBER CONVENTION

- 1. The one or two-letter codes for equipment functions shall be in capital letter.
- 2. For identical equipment in parallel train, the train number shall be indicated after the equipment functions code and shall be in numeric with one-digit-code.
- 3. A separator dash (-) shall be in between equipment functions and process unit. As for parallel train the separator dash (-) shall be after combination of equipment function and train number.
- 4. Process unit shall be in numeric with maximum of 3-digits code.
- 5. Sequence number shall be in numeric with 2-digits code.
- 6. Identical equipment suffix shall be in one-letter code in capital letter.

NOTE: Refer to Section 12.3 for more example of equipment tag numbers.

MY ALL X X G 03 002 O

April 2023

12.2.1 Equipment Function Codes "AA"

Consists of one or two-letter code which denotes the equipment type and the supporting function. Equipment type shall be indicated by the first letters, as per Column 1 of Table 2 while the Second letter is optional and shall indicate the supporting function as per Column 2 of Table 2.

- First Letter code refers to main equipment type of a plant system. Generally, it is directly contributed to the process or operation. For example, driven unit like pump, compressor, generator, etc.
- Second Letter code refers to equipment that play a role of supporting function to the main equipment (as in first letter). For example, driver unit like motor, turbine, diesel engine, gearbox and etc.

Table 12-2: Equipment Function Code

Letter	Column 1 (Equipment Type)	Column 2 (Supporting Function)
Rules for	1. One-Letter Code in Capital	1. One-Letter Code in
Tag No.	Letter	Capital Letter
Convention	2. Mandatory	2. Optional- As when
		applicable
А	Packaged units and miscellaneous	Aerial, Air Motor
	equipment, e.g., extruders, crushers,	
	cutters, kneaders, crystallisers,	
	pelletisers	
В	Buildings, rooms, enclosures,	
	containers	
С	Columns:	Chamber
	tray columns	
	 packed columns 	
	rotating disc contactors	
D	Drying equipment	Diesel engine, damper
Е	Unfired heat transfer equipment:	

MY ALL X X G 03 002 O

April 2023

Letter	Column 1 (Equipment Type)	Column 2 (Supporting Function)
Rules for	1. One-Letter Code in Capital	1. One-Letter Code in
Tag No.	Letter	Capital Letter
Convention	2. Mandatory	2. Optional- As when
		applicable
	heat exchangers	
	 condensers 	
	 air-cooled heat exchangers 	
	 reboilers 	
F	Fired equipment, furnaces, heaters,	Fan
	steam boilers, flare stack	
G	Generator	Gearbox
Н	Heaters; electrical	Hydraulic motor
I	Should be avoided to prevent	
	confusion with number 1	
J	Jets (ejectors, injectors, and	
	educators)	
K	Compressors, blowers, fans,	
	turboexpanders	
L	Pig launchers	
М	Mixers, stirrers, mixing nozzles,	Electric motor
	blenders, steam, desuperheaters,	
	agitators, piping manifolds	
N	Not assigned	Natural gas engine
0	Should be avoided to prevent	
	confusion with number 0	
Р	Pumps (centrifugal, reciprocating,	
	rotary)	
Q	Not assigned	
R	Reactors, Pig Receivers	

MY ALL X X G 03 002 O

April 2023

Letter	Column 1 (Equipment Type)	Column 2 (Supporting Function)
Rules for	1. One-Letter Code in Capital	1. One-Letter Code in
Tag No.	Letter	Capital Letter
Convention	2. Mandatory	2. Optional- As when
		applicable
S	Gravity and mechanical separators,	Shell, Fan silencer
	e.g. thickeners, cyclones, expellers,	
	centrifuges, filters, dust collectors,	
	sieves, hydrocyclones	
Т	Atmospheric storage tanks,	Turbine (steam or gas), tube
	interceptors, neutralizing pits	
U	Not assigned	
V	Vessels, incl. pressure storage	
	vessels, silos and hoppers	
W	Weighing equipment, wellhead	
Χ	Stationary transport equipment,	
	material handling equipment,	
	cranes, hoists	
Υ	Not assigned	
Z	Bulk loading arms, Offloading buoys	

NOTES:

- 1. For equipment that requires two or more letters, the most important function of the equipment shall prevail. For example, a jet is used for mixing purposes, M is preferred to J. This is for case of equipment with more than one functions.
- 2. The letters I and O should be avoided as it might be confused with the numbers 1 and 0. This is as per defined in PTS 12.00.02.

For supporting unit like driver, the combination of two-letters is required to identify the main unit function. This would help to understand the purpose of the supporting unit towards the main function. In this case, the equipment tag number identification refers to the second letter which mainly is for the driver unit.

MY ALL X X G 03 002 O

April 2023

Example of the combination of the equipment type and supporting functions are:

Table 12-3: Equipment Tag No. Convention

Equipment	First Letter	Second Letter	Description
Type &	(Equipment	(Supporting	
Function Code	Type)	Function)	
EG	Heat Exchanger	Gearbox	Gearbox of heat transfer
GT	Generator	Turbine	Turbine of generator
KT	Compressor	Turbine	Turbine of compressor
GD	Generator	Diesel Engine	Diesel engine of
			generator
PM	Pump	Electric Motor	Electric motor of pump
EM	Heat Exchanger	Electric Motor	Electric motor of air-
			cooled heat exchanger
KG	Compressor	Gearbox	Gearbox of compressor

12.2.1.1 TRAIN NUMBER FOR PARALLEL TRAINS

Identical equipment found in parallel trains shall have identical equipment numbers with specific train number identifier. The number of the train is indicated after the equipment function code.

Rules for Equipment Tag Number Convention for Train Number:

- 1. Train Number shall be in **NUMERIC with one-digit-code** and the number of the train is indicated after the Equipment Functions.
- 2. Train Number is only applicable when identical equipment in the Parallel Trains is available.

Equipment tag number convention for Identical Equipment in Parallel Train:

MY ALL X X G 03 002 O

April 2023

Tag No. Format	Eq	uipment fui	nctions
	Column 1	Column 2	Train Number
Requirement	Mandatory	Optional	Optional
E1-2306	E		1
E2-2306	E		2

Where Equipment E1-2306 and E2-2306 are identical equipment available in Train 1 and Train 2 respectively.

12.2.2 Separator

Consists of a dash (-) between equipment functions and the process unit. As for Parallel Train the separator dash (-) shall be after combination of Equipment Function and Train Number.

12.2.3 Process Unit "XXX"

Consists of one, two or three-digit code that denotes the Process Unit of respective equipment. Process unit are differ and unique between facilities i.e., Field, Platform and is normally defined by respective project team.

Rules for Equipment Tag Number Convention for Process Unit:

Process Unit shall be in **NUMERIC with one-**, **two- or three-digit code** and is Compulsory.

Examples:

for equipment unit 201, 2 (X) is Process Unit

for equipment unit 8811, 88 (XX) is Process Unit

for equipment unit 56703, 567 (XXX) is Process Unit

The last 2 digits of an equipment unit is always referring to equipment Sequence No. within the system or process unit, hence the number before the Sequence No. either

MY ALL X X G 03 002 O

April 2023

one, two or three digits would be the Process Unit. Below is the example of Process Unit and Code for Baronia Jacket Platform-K (BNJT-K) in Sarawak region.

Table 12-4: Example of Process Unit & Code for BNJT-K

PROCESS / UTILITY SYSTEM NUMBERS			
PROCESS / UTILITY SYSTEM	PROCESS UNIT		
DRILLING	00		
WELLHEADS	01, 02, 03		
FLOWLINES AND MANIFOLDS	04		
KILL FACILITIES	05		
GAS LIFT	06		
GAS RE-INJECTION	07		
WELLHEAD PRESSURIZATION	08		
WATER INJECTION	09		
OIL/GAS SEPARATION	10, 11		
OIL METERING	12		
OIL EXPORT / IMPORT	13		
GAS/CONDENSATE SEPARATION	20		
GAS / GAS SEPARATION	21		
GAS DEHYDRATION	22, 23		
GAS COMPRESSION	24, 25		
GAS METERING	26		
GAS IMPORT / EXPORT	29		
CONDENSATE DEHYDRATION	30		
CONDENSATE METERING	32		
CONDENSATE EXPORT/IMPORT	33		
CONDENSATE STABILIZATION	34		
PRODUCED WATER TREATMENT	42		
SAFETY INSTRUMENT SYSTEM	45		
PROCESS MONITORING AND CONTROL	46		
SYSTEM			

MY ALL X X G 03 002 O

April 2023

PROCESS / UTILITY SYSTEM NUMBERS			
PROCESS / UTILITY SYSTEM	PROCESS UNIT		
HVAC	50		
SERVICE WATER SYSTEM	51		
PORTABLE WATER SYSTEM	52		
FIXED FIREWATER SYSTEM / WASH WATER	53		
INSTRUMENT AIR SYSTEM	54		
UTILITY AIR SYSTEM	55		
NON-PROCESS OIL SYSTEM	56		
WASTE SYSTEM	57		
INSTRUMENT GAS SYSTEM	58		
NITROGEN SYSTEM	59		
FUEL GAS SYSTEM	60		
BLANKET GAS	61		
LP FLARE / VENT SYSTEM	62		
HP FLARE / VENT SYSTEM	63		
CLOSED DRAIN	64		
OPEN HAZARDOUS & NON-HAZADOUS	65		
DRAIN			
AVIATION FUEL SYSTEM	66		
DIESEL FUEL SYSTEM	67		
CHEMICAL INJECTION	68		
COOLING WATER	69		
MATERIAL HANDLING	73		
POWER GENERATION / DISTRIBUTION	75		
HYDRAULIC POWER UNIT	77		
FIRE AND GAS DETECTION	80, 81, 83, 85		
EMERGENCY EQUIPMENT	82		
MOBILE FIREFIGHTING EQUIPMENT	84		
FIXED FIREFIGHTING EQUIPMENT	86		
HYPOCHLORITE	88		

MY ALL X X G 03 002 O	
April 2023	

PROCESS / UTILITY SYSTEM NUMBERS					
PROCESS / UTILITY SYSTEM	PROCESS UNIT				
NAVAIDS	89				
VENT ATMOSPHERIC	95				
SEA WATER	96				

Note: The identification of Process Unit Numbering shall be obtained from P&ID drawings of respective facilities. For ongoing project, the Process Unit Numbering shall be defined by project team.

For a bigger facility, the Process Unit could be more than the example above and would range up to 3-digits code.

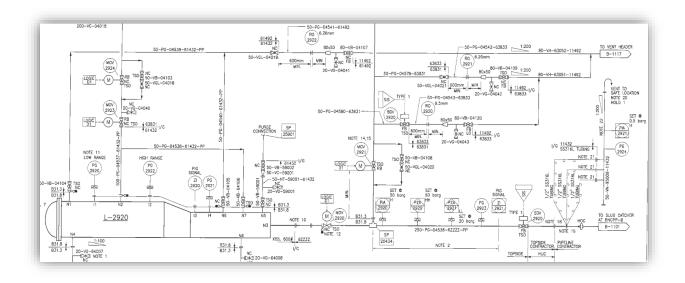


Figure 12-1: Process Unit 29: Gas Import / Export From BNJT-K Oil/Gas NAG Launcher

12.2.4 Sequence Number "YY"

A consecutively running sequence numbers with 2-digit code shall be assigned from 01 for each group of equipment within the Process Unit in accordance with Table 2, with the exception of a required flexibility for the addition of future equipment within the same sequence. For example, to Figure 2, V-1010 and V-1020 the last two-digits which are 10 and 20 are referring to Sequence Number. Although 10 and 20 is not exactly in sequence, the flexibility is given for future equipment to be added or some

MY ALL X X G 03 002 O

April 2023

of the Sequence Number from 11 to 19 are used for another equipment in between Sequence of 10 and 20.

It can also illustrate the sequence or flow of the process within the Process Unit. Thus, it is not necessarily the Sequence Number of the same type of equipment within a Process Unit.

Rules for Equipment Tag Number Convention for Sequence Number:

1. Sequence Number shall be in **NUMERIC with 2-digits code** and is Compulsory.

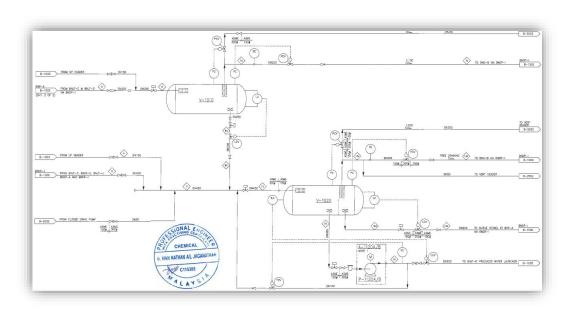


Figure 12-2: BNJT-K Process Flow Scheme Separation System

12.2.5 Identical Code Suffix "Z"

One-letter code to denote identical equipment items used for the same purpose. The following code letters shall be: "A", "B", "C", "D", etc. For common spare equipment, the letter "S" is to be used. This code neither defines the main operating equipment and the standby equipment nor the numbers of operating unit for the system. Rules for Equipment Tag Number Convention for Identical Code Suffix:

1. Identical Code Suffix shall be in **CAPITAL LETTER with 1-digits code**.

MY ALL X X G 03 002 O

April 2023

2. Identical Code Suffix is Optional and applicable when identical equipment is available.

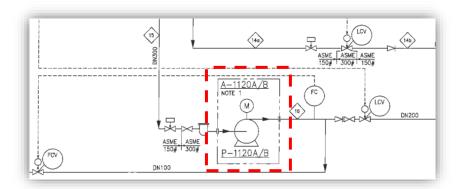


Figure 12-3: BNJT-K Oil/Gas Separation System With A/B Configuration

12.3 Example Of Equipment Numbers

12.3.1 Pump

Pump is a mechanical rotating equipment that gives gas, oil, and other fluids enough energy to flow from one location to another. In Upstream the commonly used Pumps are Rotary Pump, Centrifugal Pump and Reciprocating Pump.

The equipment tag number convention for Pump is defined below:

Equipment tag number convention: <AA>-<XXX><YY><Z>

Table 12-5: Tag Number for Pump

Equipment Tag No. Convention	Equipment functions	Separator	Process Unit	Sequence number	Identical Equipment Suffix
Tag No. Format	AA	-	XXX	YY	Z
P-0910	Р	-	09	10	
P-1120A	Р	-	11	20	А
P-1120B	Р	-	11	20	В

MY ALL X X G 03 002 O

April 2023

In which

P = Equipment function letter code of a pump.

09 = Process Unit for BNJT-K Oil/Gas Separation System

= Process Unit for BNJT-K Production, Test, and Injection Header

10,20 = Equipment sequence number of pumps in the same process unit

A/B = Configuration for identical equipment items used for the same purpose

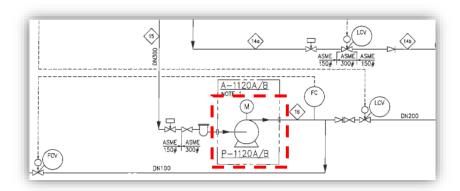


Figure 12-4: BNJT-K Oil/Gas Separation System With A/B Configuration

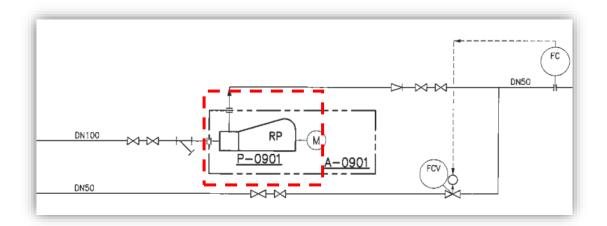


Figure 12-5: BNJT-K Process Flow Scheme Production, Test and Injection Header

MY ALL X X G 03 002 O

April 2023

12.3.2 Compressor

A compressor is a mechanical device or equipment that **pressurizes gas by reducing its volume**. In the oil and gas industry, gas compressors are used in drilling and transporting gas and liquid. An offshore gas compressor conveys gas or liquid under the sea level and on drilling platforms. In Upstream, the commonly used compressors are Rotary Pump, Centrifugal, Reciprocating and Axial Compressor.

The equipment naming or tag number format for a Compressor is defined below:

<AA>-<XXX><YY><Z>

Table 12-6: Tag Number for Compressor

Equipment Tag No. Convention	Equipment functions	Separator	Process Unit	Sequence number	Identical Equipment Suffix
Tag No. Format	AA	-	XXX	YY	Z
K-5510A	K	-	55	10	А
K-5510B	K	-	55	10	В

In which

K = Equipment function letter code of a Compressor.

= Process unit 55 for BNJT-K Instrument and Utility Air System

= Equipment sequence number of Compressors in the same unit

A and B= Are the letters indicating two identical Compressors.

MY ALL X X G 03 002 O

April 2023

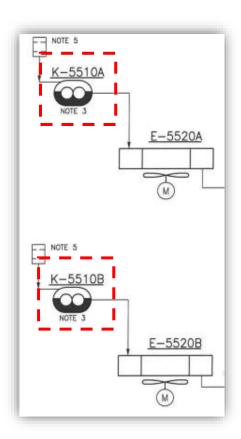


Figure 12-6: BNJT-K Instrument and Utility Air System

12.3.3 Turbine

The turbines in the oil & gas industry are used for power generation by coupling them with a compressor or pump. There are two types of turbines that are used in the oil & gas industry, namely Gas Turbines and Steam Turbines.

Turbine is driver unit hence it shall be defined with the main equipment and cannot stand alone.

MY ALL X X G 03 002 O

April 2023

The equipment naming or tag number format for Turbine is defined below:

<AA>-<XXX><YY><Z>

Table 12-7: Tag Number for Turbine

Equipment Tag No. Convention	Equipment functions	Separator	Process Unit	Sequence number	Identical Equipment Suffix
Tag No. Format	AA	-	XXX	YY	Z
GT-7510	GT	-	75	10	
GT-7520	GT	-	75	20	
GT-7530	GT	-	75	30	
GT-7540	GT	-	75	40	

In which:

GT = Equipment function second-letter code T for Turbine.

= Process unit for BNCPP-B Power Generation/Distribution

10, 20, 30, 40 = Equipment sequence number of Turbine in the same unit.

MY ALL X X G 03 002 O

April 2023

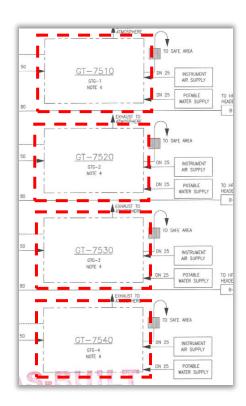


Figure 12-7: BNCPP-B Power Generation/Distribution

12.3.4 Heat Exchanger

A heat exchanger is a system that is very important for transferring heat from one medium to another (liquid, vapor, or gas). Heat exchangers are used in both situations where cooling or heating is required. There are many types of Heat Exchangers but commonly used in Upstream are Shell & Tube Heat Exchanger, Plate Heat Exchanger and Printed Circuit Heat Exchanger.

MY ALL X X G 03 002 C)

April 2023

The equipment tag number format for Heat Exchanger is defined below:

<AA>-<XXX><YY><Z>

Table 12-8: Tag Number for Heat Exchanger

Equipment Tag No. Convention	Equipment functions	Separator	Process Unit	Sequence number	Identical Equipment Suffix
Tag No. Format	AA	-	XXX	YY	Z
E-5520A	Е	-	55	20	А
E-5520B	E	-	55	20	В

In which:

E = Equipment function code of a Heat Exchanger.

= Process unit for BNJT-K Instrument and Utility Air System.

= Equipment sequence number of Heat Exchanger in the same unit.

A and B = Letters for two identical Heat Exchanger.

MY ALL X X G 03 002 O

April 2023

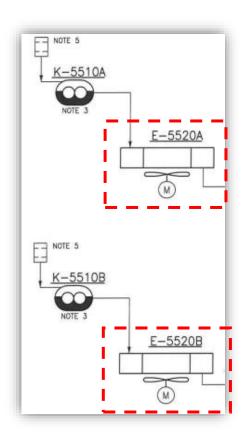


Figure 12-8: BNJT-K Instrument and Utility Air System

12.3.5 Generator

Generator is a machine that converts one form of energy into another, especially mechanical energy into electrical energy, as a dynamo, or electrical energy into sound, as an acoustic generator. In upstream, generators provide key power sources particularly to assist with drilling and digging. There are many types of generators but commonly used in Upstream are Alternating Current Generator, Direct Current Generator, Electric Generator, Frequency Generator and Emergency Diesel Generator.

MY ALL X X G 03 002 O	
April 2023	

The equipment naming or tag number format for Generator is defined below:

<AA>-<XXX><YY><Z>

Table 12-9: Tag Number for Generator

Equipment Tag No. Convention	Equipment functions	Separator	Process Unit	Sequence number	Identical Equipment Suffix
Tag No. Format	AA	-	XXX	YY	Z
GD-7710	GD	-	77	10	

In which:

GD = Equipment function code of a Diesel Engine of Generator.

= Process unit 77 for BNJT-K Emergency Diesel Engine Generator.

= Equipment sequence number of Generator in the same unit.

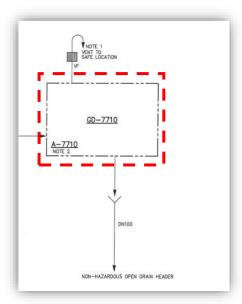


Figure 12-9: BNJT-K Process Flow Scheme Emergency Diesel Engine Generator

MY ALL X X G 03 002 O

April 2023

12.3.6 Separator

A separator is a pressure vessel used to separate hydrocarbon produced from oil and gas wells into gaseous and liquid components in the oil & gas field. Hydrocarbon streams are made up of a mixture of gas, liquid hydrocarbons, and free water at the wellhead.

The equipment tag number format for a Separator is defined below:

Table 12-10: Tag Number for Separator

Equipment Tag No. Convention	Equipment functions	Separator	Process Unit	Sequence number	Identical Equipment Suffix
Tag No. Format	AA	-	XXX	YY	Z
S-0900	S	-	09	00	
S-5530A	S	-	55	30	А
S-5530B	S	-	55	30	В

In which:

S = Equipment function code of a Separator.

= Process unit for BNJT-K Water Injection.

= Process unit for BNJT-K Instrument and Utility Air System.

00, 30 = Equipment sequence number of Separator in the same unit.

A and B = Letters for two identical Separator

MY ALL X X G 03 002 O

April 2023

Figure 12-10: BNJT-K Process Flow Scheme Water Injection

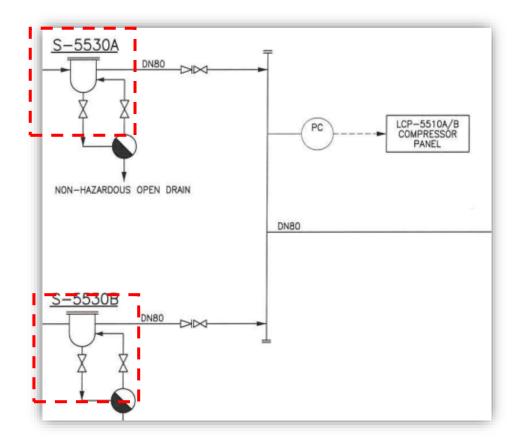


Figure 12-11: BNJT-K Instrument and Utility Air System

MY ALL X X G 03 002 O

April 2023

12.3.7 Storage Tank

A storage tank is used for storing and containing LNG. Based on how the LNG is contained in the event of a breach of the primary container, a storage tank is classified as one of the following three systems.

The equipment tag number format for a Storage Tank is defined below:

<AA>-<XXX><YY><Z>

Table 12-11: Tag Number for Storage Tank

Equipment Tag No. Convention	Equipment functions	Separator	Process Unit	Sequence number	Identical Equipment Suffix
Tag No. Format	AA	-	XXX	YY	Z
T-6510	Т	-	65	10	
T-6720	Т	-	67	20	

In which:

T = Equipment function code of a storage tank.

= Process Unit for Open Drain System.

= Process Unit for Diesel Fuel System.

10,20 = Equipment sequence number of Storage Tank in the same unit.

MY ALL X X G 03 002 O

April 2023

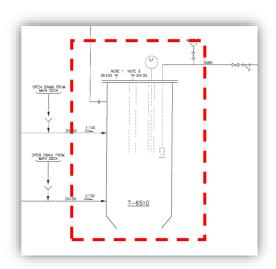


Figure 12-12: BNJT-K Open Drain System

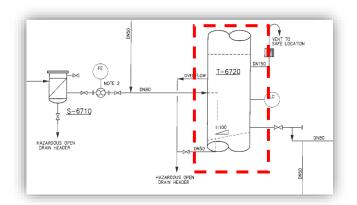


Figure 12-13: BNJT-K NAG Production Wellhead

MY ALL X X G 03 002 O

April 2023

12.3.8 Launcher

Pig Launchers are pressure containing vessels or sections of piping that are utilized for pipeline maintenance, cleaning, and inline inspection. Pig Launcher allow operators to launch pipeline pigs without disrupting line contents or interrupting and shutting down pipeline operations.

The equipment tag number format for Launcher is defined below:

<AA>-<XXX><YY><Z>

Table 12-12: Tag Number for Launcher

Equipment Tag No. Convention	Equipment functions	Separator	Process Unit	Sequence number	Identical Equipment Suffix
Tag No. Format	AA	-	XXX	YY	Z
L-4210	L	-	42	10	
L-2920	L	-	29	20	

In which:

Equipment function code of a Launcher

42,29 = Process Unit for BNJT-K Launchers and Risers

10,20 = Equipment sequence number of Launcher in the same unit.

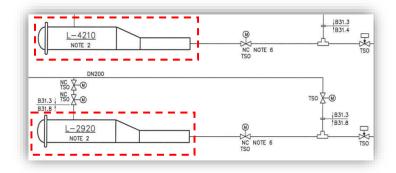


Figure 12-14: BNJT-K Process Flow Scheme Launchers and Risers

MY ALL X X G 03 002 O

April 2023

12.3.9 Receiver

Pig Receiver are pressure containing vessels or sections of piping that are utilized for pipeline maintenance, cleaning, and inline inspection. Pig Receiver allow operators to receive pipeline pigs after the pigging process without disrupting line contents or interrupting and shutting down pipeline operations.

The equipment tag number format for Receiver is defined below:

<AA>-<XXX><YY><Z>

Table 12-13: Tag Number for Receiver

Equipment Tag No. Convention	Equipment functions	Separator	Process Unit	Sequence number	Identical Equipment Suffix
Tag No. Format	AA	-	XXX	YY	Z
R-502	R	-	5	02	
R-501	R	-	5	01	

In which:

R = Equipment function code of a Receiver

= Process unit for Dulang Oil Separation System

02,01 = Equipment sequence number of Receiver in the same unit.

MY ALL X X G 03 002 O

April 2023

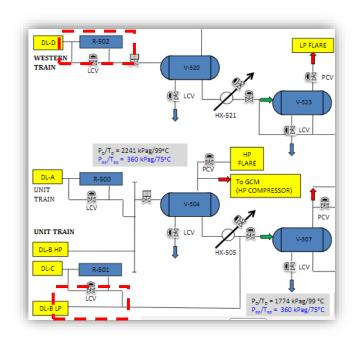


Figure 12-15: R-501 & R-502 From Dulang Oil Separation System

12.3.10 Pressure Vessel

A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure.

The equipment tag number format for Pressure Vessel is defined below:

<AA>-<XXX><YY><Z>

Table 12-14: Tag Number for Pressure Vessel

Equipment Tag No. Convention	Equipment functions	Separator	Process Unit	Sequence number	Identical Equipment Suffix
Tag No. Format	AA	-	XXX	YY	Z
V-1010	V	-	10	10	
V-1020	V	-	10	20	

MY ALL X X G 03 002 O

April 2023

In which:

V = Equipment function code of a Pressure Vessel

10 = Process unit for BNJT-K HP Separator

10,20 = Equipment sequence number of Pressure Vessel in the same unit.

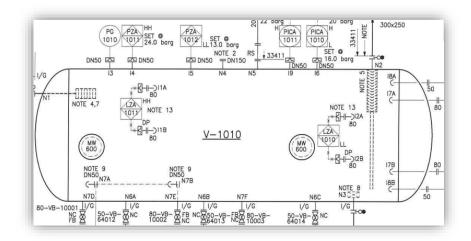


Figure 12-16: V-1010 From BNJT-K HP Separator

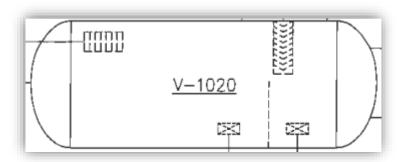
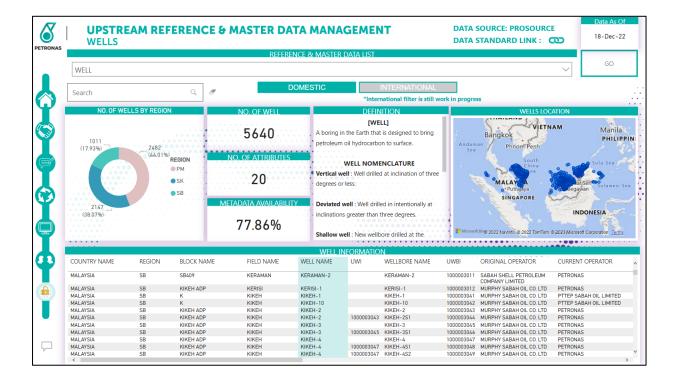


Figure 12-17: V-1020 From BNJT-K Process Flow Scheme Separator System

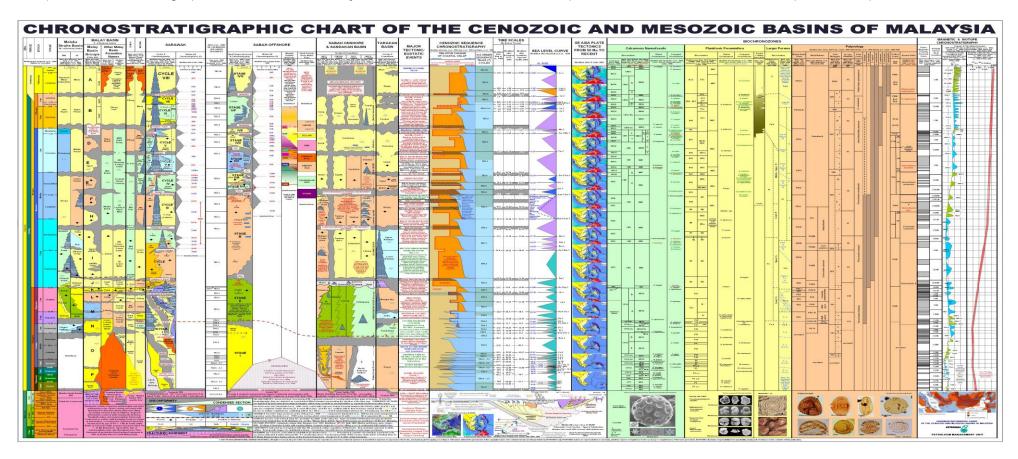

MY ALL X X G 03 002 O

April 2023

12 APPENDIX

Appendix 1: R&M Data Management

The listing for each asset's name should be referred to Upstream Reference & Master (R&M) Data Management.



MY ALL X X G 03 002 O

April 2023

Appendix 2: Sample of Choronostratigraphic Chart

Sample of chronostratigraphic chart established by PETRONAS. This chart will be updated from time to time from Exploration Upstream.

MY ALL X X G 03 002 O

April 2023

-END OF DOCUMENT-